Skip to main content

Mycorrhizal research — a priority in agriculture

  • Chapter
Concepts in Mycorrhizal Research

Part of the book series: Handbook of Vegetation Science ((HAVS,volume 19/2))

Abstract

The vesicular arbuscular mycorrhizae (VAM) help in conversion of arid soil to fertile and productive soil. VAM fungi increase plant growth through enhanced nutrient uptake and cycling of phosphorus, nitrogen, carbon, zinc, copper and other minerals. The bacteria associated with mycorrhizal fungi solubilize P which is transported through the mycorrhizal fungi to plant. Mycorrhizal fungal hyphae produce phosphatases and organic acids that enhance the availability of soil P by weathering P from the clay matrix and maintaining the solution P by binding Ca with the secreted oxalates. There are reports that N fixed by one plant has been transported to an adjacent, non-fixing plant through mycorrhizal fungal hyphae. Mycorrhizal hyphae form aggregates by directly binding soil particles possibly by producing polysaccharides. These aggregates are a major input into systems with low organic matter. Apart from nutrient uptake, mycorrhizae also enhance the transport of water from soil to plant. VAM fungal inoculated plants exhibit increased drought resistance and resistance to fungal root diseases and nematode diseases. VAM fungi initiate host defence response in roots by increasing phenols, peroxidases, phytoalexins etc. VAM fungi by synergistic action with nitrogen fixing nodulating organisms enhance mineral nutrition and growth of crop plants. Agricultural practices such as fallowing, tillage, top soil removal, fires, water logging and the use of chemicals like pesticides and fertilizers can influence VAM inoculum potential. Large differences exist between plant species in their dependence of VAM fungi for uptake and growth. The selection of VAM fungi, inoculum production and inoculation techniques are important factors which play a major role in favouring good results of VAM fungi for agricultural systems. The benefits of VAM fungi for sustainable agriculture are immense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.K., Robson, A.D. and Gazey, C. 1992. Selection of inoculant vesicular arbuscular mycorrhizal fungi. In: Methods in Microbiology, Vol. 24-Techniques for the study of mycorrhizae (eds. Norris, J.R., Read, D.J. and Varma, A.K.) Academic Press, London, pp. 1–21.

    Google Scholar 

  2. Adholeya, A., Johri, B.N. and Chauhan, R.K.S. 1988a. Effect of VAM-Rhizobium interaction on productivity, N-P uptake, dry weight and infection per cent in Indian mung bean (Vigna radiata). In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K.) University of Madras, Madras, India, pp. 195–197.

    Google Scholar 

  3. Adholeya, A., Johri, B.N. and Chauhan, R.K.S. 1988b. VAM-Rhizobium interaction and its effect on colonization and nitrogen fixation in mung bean (Vigna radiata) under field trial. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K.) University of Madras, Madras, India, pp. 198–200.

    Google Scholar 

  4. Alexander, I.J. and Hardie, K. 1981. Surface phosphatase activity of sitka spruce mycorrhizas from serpentine sites. Soil Biology and Biochemistry, 13: 301–305.

    CAS  Google Scholar 

  5. Allen, E.B. and Allen, M.F. 1986. Water relations of xeric grasses in the field: interactions of mycorrhizae and competition. New Phytologist, 104: 559–571.

    Google Scholar 

  6. Allen, M.F. 1982. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (J.B.K.) Lag. ex Steud. New Phytologist, 91: 191–196.

    Google Scholar 

  7. Allen, M.F., Allen, E.B. and Stahl, P.D. 1984. Differential niche response of Bouteloua gracilis andAgropyron smithii to VA mycorrhizae. Bulletin Torrey Botanical Club, 111: 316–325.

    Google Scholar 

  8. Allen, M.F. and MacMahon, J.A. 1985. Importance of disturbance on cold desert fungi: comparative microscale dispersion patterns. Pedobiologia, 28: 215–224.

    Google Scholar 

  9. Allen, M.F., Smith, W.K. Moore, T.S., Jr. and Christensen, M. 1981a. Influence of phosphate source on vesicular arbuscular mycorrhizae of Bouteloua gracilis. New Phytologist, 87: 687–694.

    CAS  Google Scholar 

  10. Allen, M.F., Smith, W.K., Moore, T.S., Jr. and Christensen, M. 1981b. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis (J.B.K.) Lag ex Steud. New Phytologist, 88: 683–693.

    Google Scholar 

  11. Ames, R.N., Reid, C.P.P., Porter, L.K. and Cambardella, C. 1983. Hyphal uptake and transport of nitrogen from two 15N labelled sources by Glomus,nosseae, a vesicular arbuscular mycorrhizal fungus. New Phytologist, 95: 381–396.

    Google Scholar 

  12. Amijee, F., Tinker, P.B. and Stribley, D.P. 1989. The development of endo-mycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytolologist, 111: 435–446.

    Google Scholar 

  13. Anderson, E.L., Miller, P.D. and Kunishi, H.M. 1987. Maize root length density and mycorrhizal infection as influenced by tillage and soil phosphorus. Journal of Plant Nutrition, 10: 1349–1346.

    CAS  Google Scholar 

  14. Azcon, R., Azcon-Aguilar, C. and Barea, J.M. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses of VA endomycorrhiza. New Phytolologist, 80: 359–369.

    CAS  Google Scholar 

  15. Azcon, R., Barea, J.M. and Hayman, D.S. 1976. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biology and Biochemistry, 8: 135–138.

    CAS  Google Scholar 

  16. Azcon, R. and Ocampo, J.A. 1981. Factors affecting the vesicular arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytologist, 87: 677–685.

    CAS  Google Scholar 

  17. Azcon-Aguilar, C. and Barea, J.M. 1978. Effects of interactions between different culture fractions of ‘Phosphobacteria’ and Rhizobium on mycorrhizal infection, growth and nodulation of Medicago sativa. Canadian Journal of Microbiology, 24: 520–524.

    Google Scholar 

  18. Baath, E. and Hayman, D.S. 1983. Plant growth responses to vesicular-arbuscular mycorrhizae. XIV. Interactions with Verticillium wilt on tomato plants. New Phytologist, 95: 419–426.

    Google Scholar 

  19. Bagyaraj, D.J. 1992. Vesicular-arbuscular mycorrhiza: Application in agriculture. In: ‘Methods in Microbiology. vol. 24. Techniques for the study of mycorrhiza’ (eds. Norris, J.R., Read, D.J. and Varma, A.K.) Academic Press, London, pp. 359–373.

    Google Scholar 

  20. Bagyaraj, D.J. and Manjunath, A. 1980. Selection of a suitable host for mass production of vesicular arbuscular mycorrhizal inoculum. Plant and Soil, 55: 495–498.

    Google Scholar 

  21. Bagyaraj, D.J. and Manjunath, A. and Govinda Rao, Y.S. 1988. Mycorrhizal inoculation effect on different crops. Journal of Soil Biology and Ecology, 8: 98–103.

    Google Scholar 

  22. Bagyaraj, D.J. and Menge, J.A. 1978. Interactions between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytologist, 80: 567–573.

    Google Scholar 

  23. Bajwa, R. and Read, D.J. 1986. Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and nonmycorrhizal seedlings of Vaccinium. Transactions British Mycological Society, 87: 269–277.

    CAS  Google Scholar 

  24. Bali, M. and Mukerji, K.G. 1988. Effect of VAM fungi on Fusarium wilt of cotton. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natrajan, K.) University of Madras, Madras, India, pp. 233–234.

    Google Scholar 

  25. Bali, M. and Mukerji, K.G. 1991. Interaction between VA mycorrizal fungi and root microflora of Jute. In: ‘Plant Roots and their Environment’ (eds. Mc Michael, B.L. and Persson, H. ). Elsevier, Amsterdom, pp. 396–401.

    Google Scholar 

  26. Baltruschat, H. 1987. Field inoculation of maize with vesicular arbuscular mycorrhizal fungi by using expanded clay as carrier material for mycorrhiza. Journal of Plant Disease Protection, 94: 419–430.

    Google Scholar 

  27. Baltruschat, H. and Schoenbeck, F. 1975. The influence of endotrophic mycorrhiza on the infestation of tobacco by Thielaviopsis basicola. Phytopatholish Zeitschrift, 84: 172–188.

    CAS  Google Scholar 

  28. Bansal, M. and Mukerji, K.G. 1992. Effect of VAM and phosphorus fertilizers on Leucaena root productivity. In: ‘Root Ecology and its Practical Application’ (eds. Kutschera, L., Hübl, L., Lichtenegger, E., Persson, H. and Sobotik, M. ). Verein für Warzelforschung, Klagenfurt, Vienna, pp. 543–546.

    Google Scholar 

  29. Bansal, M. and Mukerji, K.G. 1993. Dead fine roots a neglected biofertilizer. In: Plant nutrition — from genetic engineering to field practice’ (ed. Barrow, N.J.) Kluwer Academic Publishers, Amsterdam, pp. 547–550.

    Google Scholar 

  30. Bansal, M. and Mukerji, K.G. 1994a. Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5: 39–44.

    Google Scholar 

  31. Bansal, M. and Mukerji, K.G. 1994b. Efficacy of root litter as a biofertiliser. Biology and Fertility of Soils, 18: 228–230.

    Google Scholar 

  32. Barea, J.M. 1991. Vesicular arbuscular mycorrhizae as modifiers of soil fertility. Advances in Soil Science, 15: 1–40.

    Google Scholar 

  33. Barea, J.M., Azcon, R. and Azcon-Aguilar, C. 1993. Mycorrhiza and crops. In: ‘Mycorrhiza synthesis’ (eds. Ingram, D.S. and Williams, P.H.) Academic Press, London, pp. 167–189.

    Google Scholar 

  34. Barea, J.M., De Bonis, A.F. and Olivares, J. 1983. Interactions between Azospirillum and VA mycorrhizae and their effects on growth and nutrition of maize and ryegrass. Soil Biolology and Biochemistry, 15: 705–709.

    Google Scholar 

  35. Becard, G.and Fortin, J.A. 1988. Early events of vesicular arbuscular mycorrhiza formation on RiT-DNA transformed roots. New Phytologist, 108: 211–218.

    Google Scholar 

  36. Becard, G. and Piche, Y. 1989. Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Applied Environmental Microbiology, 55: 2320–2325.

    CAS  Google Scholar 

  37. Bethlenfalvay, G.J., Brown, M.S. and Stafford, A.E. 1985. Glycine-Glomus-Rhizobium symbiosis I1.1985. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiology, 79: 1054–1058.

    Google Scholar 

  38. Bethlenfalvay, G.J. and Franson, R.L. 1989. Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12: 953–970.

    CAS  Google Scholar 

  39. Bethlenfalvay, G.J., Franson, R.L. Brown, M.S. and Mihara, K.L. 1989. The GlycineGlomus-Bradyrhizobium symbiosis. IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus, Glomus mosseae. Physiologia Plantarum, 76: 226–232.

    Google Scholar 

  40. Bieleski, R.L. 1973. Phosphate pools, phosphate transport and phosphate availability. Annual Review of Plant Physiology, 24: 225–252.

    CAS  Google Scholar 

  41. Black, R. and Tinker, P.B. 1979. The development of endomycorrhizal root systems. II. Effect of agronomic factors and soil conditions on the development of vesicular arbuscular mycorrhizal infection in barley and on endophyte spore density. New Phytologist, 83: 401–413.

    Google Scholar 

  42. Bolan, N.S. 1991. A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 134: 189–207.

    CAS  Google Scholar 

  43. Bolan, N.S., Robson, A.D. and Burrow, N.J. 1984. Increasing phosphorus supply can increase the infection of plant roots by vesicular arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 16: 419–420.

    CAS  Google Scholar 

  44. Bowen, G.D. 1980. Mycorrhizal roles in tropical plants and ecosystems. In: ‘Tropical mycorrhiza research’ (ed. Mikola, J.) Clarendon Press, Oxford, pp. 165–189.

    Google Scholar 

  45. Bowen, G.D. and Smith, S.E. 1981. The effects of mycorrhizas on nitrogen uptake by plants. Ecological Bulletin (Stockholm), 33: 237–247.

    Google Scholar 

  46. Caldwell, M.M., Eissenstat, D.M., Richards, J.H. and Allen, M.F. 1985. Competition for phosphorus: differential uptake from dual-isotope-labelled soil interspaces between shrub and grass. Science, 229: 384–386.

    PubMed  CAS  Google Scholar 

  47. Caron, M., Fortin, A. and Richard, C. 1986a. Effect of Glomus intraradices on infection by Fusarium oxysporum f. sp. radicis-lvcopersici. Canadian Journal of Botany, 64: 552–556.

    Google Scholar 

  48. Caron, M., Fortin, A. and Richard, C. 1986b. Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology, 76: 942–946.

    CAS  Google Scholar 

  49. Chaturvedi, C. and Sharma, A.K. 1988. Interaction studies of Glomus caledonium and Rhizobium in relation to uptake and translocation of labelled phosphatic fertilizers in chickpea (Cicer arietinum). In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K. ). Univ. Madras, Madras. India, pp. 134–135.

    Google Scholar 

  50. Carpenter, A.T. and Allen, M.F. 1988. Responses of Hedysarum boreale to mycorrhizas and Rhizobium: plant and soil nutrient changes. New Phytologist, 109: 125–132.

    Google Scholar 

  51. Cason, K.M.T., Hussey, R.S. and Roncadori, R.W. 1983. Interaction of vesicular arbuscular mycorrhizal fungi and phosphorus with Meloidogvne incognita in tomato. Journal of Nematology, 15: 10–417.

    Google Scholar 

  52. Coltman, R.R., Waterer, D.R. and Huang, R.S. 1988. A simple method for production of Glomus aggregatuni inoculum using controlled-release fertilizer. Horticulture Science, 23: 213–215.

    Google Scholar 

  53. Cooper, K.M. and Grandison, G.S. 1986. Interaction of vesicular arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogvne hapla. Annals Applied Biology, 108: 555–565.

    Google Scholar 

  54. Cooper, K.M. and Tinker, P.B. 1978. Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas. II. Uptake and translocaton of phosphorus, zinc and sulphur. New Phytologist, 81: 43–52.

    CAS  Google Scholar 

  55. Crush, J.R. 1974. Plant growth responses to vesicular arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytologist, 73: 743–752.

    CAS  Google Scholar 

  56. Daft, M.J. 1991. Influence of genotypes, rock phosphate and plant densities on mycorrhizal development and the growth responses of five different crops. Agriculture Ecosystems and Environment, 35: 151–169.

    Google Scholar 

  57. Daft, M.J. and El-Giahmi, A.A. 1974. Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation of french bean (Phaseolus vulgaris). New Phytologist, 73: 1139–1149.

    Google Scholar 

  58. Daniels, B.A., McCool, P.M. and Menge, J.A. 1981. Comparative inoculum potential of spores of six vesicular arbuscular mycorrhizal fungi. New Phytologist, 89: 385–391.

    Google Scholar 

  59. Davis, R.M. 1980. Influence of Glomus fasciculatum on Thielaviopsis basicola root rot of citrus. Plant Disease, 64: 839–840.

    Google Scholar 

  60. Davis, R.M. and Menge, J.A. 1980. Influence of Glomus fasciculatum and soil phosphorus on Phytophthora root rot of citrus. Phytopathology, 70: 447–452.

    CAS  Google Scholar 

  61. Davis, R.M., Menge, J.A. and Zentmyer, G.A. 1978. Influence of vesicular arbuscular mycorrhizal fungi on Phytophthora root rot of three crop plants. Phytopathology, 68: 1614–1617.

    Google Scholar 

  62. Dehne, H.W. 1982. Interaction between vesicular arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72: 1115–1119.

    Google Scholar 

  63. Dehne, H.W. and Backhaus, G.F. 1986. The use of vesicular arbuscular mycorrhizal fungi in plant production. I. Inoculum production. Journal of Plant Disease Protection, 93: 415–424.

    Google Scholar 

  64. Dehne, H.W. and Schoenbeck, F. 1978. Investigation on the influence of endotrophic mycorrhiza on plant diseases. 3. Chitinase activity and ornithine cycle. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschatz, 85: 666–678.

    CAS  Google Scholar 

  65. Diem, H.G. and Dommerges, Y.R. 1990. Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: ‘The biology of Frankia and actinorhizal plants’ (eds. Schwintzer. C.R. and Tjepkema, J.D. ), Academic Press, San Diego, CA, pp. 317–342.

    Google Scholar 

  66. Dixon, R.K. 1988. Cytokinin-like activity in Citrus jambhiri seedlings colonized by mycorrhizal fungi. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K ). University of Madras, Madras, India, pp. 136–138.

    Google Scholar 

  67. Dodd, J.C. Burton, C.C., Burns, R.G. and Jeffries, P. 1987. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular arbuscular mycorrhizal fungi. New Phytologist, 107: 163–172.

    CAS  Google Scholar 

  68. Douds, D.D. and Schenck, N.C. 1990a. Cryopreservation of spores of vesicular arbuscular mycorrhizal fungi. New Phytologist, 115: 667–674.

    Google Scholar 

  69. Douds, D.D. and Schenck, N.C, 1990b. Increased sporulation of vesicular arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied Environmental Microbiology, 56: 413–418.

    CAS  Google Scholar 

  70. Elliott, A.P., Bird, G.W. and Safir, G.R. 1984. Joint influence of Pratylenchus penetrans (Nematode) and Glomus fasciculatum (Phycomycete) on the ontogeny of Phaseolus vulgaris. Nematropica, 14: 111–119.

    Google Scholar 

  71. Elmes, R.P. and Mosse, B. 1984. Vesicular-arbuscular endomycorrhizal inoculum production. II. Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Canadian Journal of Botany, 62: 1531–1536.

    CAS  Google Scholar 

  72. Evans, D.G. and Miller, M.H. 1988. Vesicular arbuscular mycorrhizas and the soil disturbance induced reduction of nutrient absorption in maize. I. Casual relationships. New Phytologist, 110: 67–74.

    Google Scholar 

  73. Evans, D.G. and Miller, M.H. 1990. The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizae colonization of maize. New Phytologist, 114: 65–71.

    Google Scholar 

  74. Feldmann, F. and Idczak, E. 1992. Inoculum production of vesicular arbuscular mycorrhizal fungi for use in tropical nurseries. In: Methods in Microbiology. Vol. 24. Techniques for the study of mycorrhiza, (eds. Norris, J.R., Read, D.J. and Varma, A.K.) Academic Press, London, pp. 339–357.

    Google Scholar 

  75. Ferguson, J.J. and Menge, J.A. 1982. Factors that affect production of endomycorrhizal inoculum. Proceedings Florida State Horticultural Society, 95: 35–39.

    Google Scholar 

  76. Ferguson, J.J. and Woodhead, S.H. 1982. Production of endomycorrhizal inoculum. A. Increase and maintenance of vesicular arbuscular fungi. In: ‘Methods and principles of mycorrhizal research (ed. Schenck, N.C.) American Phytopathological Society, St. Paul, Minnesota, pp. 47–54.

    Google Scholar 

  77. Finlay, R.D. and Read, D.J. 1986. The structure and function of the vegetative mycelium of ectomycorrhizal plants. 1. Translocation of 14C labelled carbon between plants interconnected by a common mycelium. New Phytologist, 103: 143–156.

    Google Scholar 

  78. Forster, S.M. and Nicolson, T.H. 1981. Aggregation of sand from a maritime embryo sand dune by microorganisms and higher plants. Soil Biology and Biochemistry, 13: 199–203.

    Google Scholar 

  79. Frey, B. and Schuepp, H.A. 1993. A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biology and Biochemistry, 25: 651–658.

    Google Scholar 

  80. Friese, C.F. and Allen, M.F. 1988. The interaction of harvester ant activity and VA Mycorrhizal fungi. Proceedings of Royal Society, Edinburg, 94: 176.

    Google Scholar 

  81. Ganesan, V. 1993. Distribution of VAM fungi in different habitats and the effect on selected VAM fungi on a few tuber crops. Ph.D. Thesis, Univ. Madras, Madras, India, 188 p.

    Google Scholar 

  82. Ganesan, V., Ragupathy, S., Parthipan, B., Rajini Rani, D.B. and Mahadevan, A. 1991. Distribution of vesicular arbuscular mycorrhizal association in coal, lignite and calcite mine spoils in India. Biology and Fertility of Soils, 12: 131–136.

    Google Scholar 

  83. Gangopadhyay, S. and Das, K.M. 1987. Control of soil borne diseases of rice through vesicular arbuscular mycorrhizae. In: ‘Mycorrhizae round table’ (eds. Verma, A.K., Oka, A.K., Mukerji, K.G., Tilak, K.V.B.R. and Janak Raj) IDRC and JNU, New Delhi, India, pp. 560–580.

    Google Scholar 

  84. Ganry, F., Diem, H.G., Wey, J. and Dommergues, Y.R. 1985. Inoculation with Glomus mosseae improves Nz fixation by field-grown soybeans. Biology and Fertility of Soils, 1: 15–23.

    Google Scholar 

  85. Garcia-Garrido, J.M. and Ocampo, J.A. 1989. Effect of VA mycorrhiizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biology and Biochemistry, 21: 165–167.

    Google Scholar 

  86. Gardner, I.C., Clelland, D.M. and Scott, A. 1984. Mycorrhizal improvement in non-leguminous nitrogen fixing associations with particular reference to Hippophae rhamnoides L. Plant and Soil, 78: 189–199.

    Google Scholar 

  87. Gauthier, D., Diem, H.G. and Dommergues, Y. 1983. Preliminary results of research on Frankia and endomycorrhizae associated with Casuarina equisetifolia. In: ‘Casuarina: Ecology, management and utilization (eds. Midgeley, S.J. Turnbull, J.W. and Johnston, R.D.) CSIRO, Melbourne, pp. 211–217.

    Google Scholar 

  88. Gerdemann, J.W. 1968. Vesicular arbuscular mycorrhiza and plant growth. Annual Review of Phytopathology, 6: 397–418.

    Google Scholar 

  89. Gianinazzi-Pearson, V. and Gianinazzi, S. 1983. The physiology of vesicular arbuscular mycorrhizal roots. Plant and Soil, 71: 197–209.

    CAS  Google Scholar 

  90. Gianinazzi-Pearson, V., Gianinazzi, S., Dexheimer, J., Morandi, D. Trauvelot, A. and Dumas, E. 1988. Recherche sur les mechanismes intervenant dans les interactions symbiotigues plante-chamignons endomycorrhizogenes VA. Cryptogamie Mycologie, 9: 201–209.

    Google Scholar 

  91. Giovannetti, M., Tosi, D., Dellatone, G. and Zazzserini, A. 1991. Histological and biochemical interactions between vesicular-arbuscular mycorrhizae and Thielaviopsis basicola in tobacco plants. Journal of Phytopathology, 131: 265–274.

    CAS  Google Scholar 

  92. Gopinathan, S. and Raman, N. 1991. Indole-3-acetic acid production in ectomycorrhizal fungi. Indian Journal of Experimental Biology, 30: 142–143.

    Google Scholar 

  93. Govinda Rao, Y.S., Bagyaraj, D.J. and Rai, P.V. 1983. Selection of an efficient VA mycorrhizal fungus for finger millet. Zeitschrift fur Mikrobiologie, 138: 415–419.

    Google Scholar 

  94. Graham, J.H. and Menge, J.A. 1982. Influence of vesicular-arbusculaer mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology, 72: 95–98.

    Google Scholar 

  95. Grandison. G.S. and Cooper, K.M. 1986. Interactions of vesicular arbuscular mycorrhizae and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. Journal of Nematology, 18: 141–149.

    Google Scholar 

  96. Graustein, V.C., Cromack, K. Jr. and Sollins, P. 1977. Calcium oxalate: Occurrence in soils and effect on nutrient geochemical cycles. Science, 198: 1252–1254.

    PubMed  CAS  Google Scholar 

  97. Haas, J.H. and Krikun, J. 1985. Efficacy of endomycorrhizal fungus isolates and inoculum quantities required for growth response. New Phytologist, 100: 613–621.

    Google Scholar 

  98. Habte, M. 1989. Impact of stimulated erosion on the abundance and activity of indigenous vesicular arbuscular endophytes in an oxisol. Biology and Fertility of Soil, 7: 164–167.

    Google Scholar 

  99. Hadley, G. 1985. Mycorrhiza in tropical orchids. In: Proc. of the Fifth Asian Orchid Congress Seminar, pp. 154–159.

    Google Scholar 

  100. Harley, J.L. and Smith, S.E. 1983. Mycorrhizal symbiosis. Academic Press, London.

    Google Scholar 

  101. Harnikumar, K.M. and Bagyaraj, D.J. 1988. Effect of intercropping and organic soil amendments on native VAM. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K ). Univ. Madras, Madras, India, pp. 207–208.

    Google Scholar 

  102. Harris, D. and Paul, E.A. 1987. Carbon requirments of vesicular arbuscular mycorrhizae. In: ‘Ecophysiology of VA mycorrhizal plants’ (ed. Safir, G.R.) CRC Press, Boca Raton, FL. U.S.A., pp. 93–105.

    Google Scholar 

  103. Haselwandter, K., Bonn, G. and Read, D.J. 1987. Degradation and utilization of lignin by mycorrhizal fungi. In: ‘Mycorrhizae in the next decade: Practical applications and research priorities’. (eds. Sylvia, D.M., Hung, L.L. and Graham, J.H.) IFAS, Gainesville, FL., U.S.A., p. 131.

    Google Scholar 

  104. Hattingh, M.J. and Gerdemann, J.W. 1975. Inoculation of Brazilian sour orange seed with an endomycorrhizal fungus. Phytopathology, 65: 1013–1016.

    Google Scholar 

  105. Hayman, D.S. 1982. Influence of soils and fertility on activity and survival of vesiculararbuscular mycorrhizal fungi. Phytopathology, 72: 1119–1125.

    Google Scholar 

  106. Hayman, D.S. 1987. VA mycorrhizas in field crop systems. In: ‘Ecophysiology of VA mycorrhizal plants’ (ed. Safir, G.R.) CRC Press, Boca Raton, FL, pp. 171–192.

    Google Scholar 

  107. Hayman, D.S., Morris, E.J. and Page, R.J. 1981. Methods for inoculating field crops with mycorrhizal fungi. Annals Applied Biology, 99: 247–253.

    Google Scholar 

  108. Hepper, C.M. 1983. The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytologist, 92: 389–399.

    Google Scholar 

  109. Herrera, R., Merida, T., Stark, N. and Jordan, C.F. 1978. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften, 65: 208–209.

    CAS  Google Scholar 

  110. Hirrel, M.C. and Gerdemann, J.W. 1979. Carbon transfer between onions infected with vesicular-arbuscular mycorrhizal fungus. New Phytologist, 83: 731–738.

    CAS  Google Scholar 

  111. Ho, I. 1988. Interaction between VA-mycorrhizal fungus and the Azotobacter and their combined effects on growth of tall fescue. Plant and Soil, 105: 291–293.

    Google Scholar 

  112. Ho, I. and Trappe, J.M. 1975. Nitrate reducting capacity of two vesicular arbuscular mycorrhizal fungi. Mycologia, 67: 886–888.

    PubMed  CAS  Google Scholar 

  113. Howeler, R.H., Sieverding, E. and Saif, S. 1987. Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant and Soil, 100: 249–283.

    Google Scholar 

  114. Hung, L.L. and Sylvia, D.M. 1988. Production of vesicular arbuscular mycorrhizal fungus inoculum in aeroponic culture. Applied Environmental Microbiology, 54: 353–357.

    CAS  Google Scholar 

  115. Hung, L.L., O’Keefe, D.M. and Sylvia, D.M. 1991. Use of a hydrogel as a sticking agent and carrier of vesicular arbuscular mycorrhizal fungi. Mycological Research, 95: 427–429.

    Google Scholar 

  116. Hussey, R.S. and Roncadori, R.W. 1982. Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66: 9–14.

    Google Scholar 

  117. Hwang, S.F. 1992. Effects of vesicular arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium wilts of alfalfa. Plant Disease, 76: 239–243.

    Google Scholar 

  118. Islam, P., Ayaneba, A. and Sanders, F.E. 1980. Response of cowpea (Vigna unguiculata) to inoculation with VA mycorrhizal fungi and to rock phosphate fertilization in some unsterilised Nigerian soils. Plant and Soil, 54: 107–117.

    CAS  Google Scholar 

  119. Ilag, L.I., Rosales, A.M., Elazegui, F.A. and Mew, T.W. 1987. Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant and Soil, 103: 67–73.

    Google Scholar 

  120. Jabaji-Hare, S.H. and Stobbs, L.M. 1984. Electron microscopic examination of tomato roots co-infected with Glomus sp. and tobacco mosaic virus. Phytopathology, 74: 277–279.

    Google Scholar 

  121. Jagpal, R. and Mukerji, K.G. 1987. Large scale cropping on Indian Arid Lands. Proceedings International Symposium on Dryland Farming. Yangling, Saanxi, China (September 17–22, 1987) Vol. 1: 56–77.

    Google Scholar 

  122. Jagpal, R. and Mukerji, K.G. 1991a. Reforestation in waste lands using vesicular arbuscular mycorrhizae. In: ‘Recent Developments in Tree Plantations of Humid/Subhumid Tropics of Asia’. (eds. Abod, S.A., Tahir, P.Md. Tsai, L.M. Shukar, N.A. Ab., Sajap, A.S., and Manikam, D.) University Pertanian Malaysis, Selonger, Malaysia, pp. 488–494.

    Google Scholar 

  123. Jagpal, R. and Mukerji. K.G. 1991b. VAM fungi in reforestation. In: ‘Plant Roots and their Enivronment’ (eds. Mc Michael, B.L. and Persson, H.) Elsevier, Amsterdam, pp. 309–313.

    Google Scholar 

  124. Jalabi, B.L. 1986. VA mycorrhizae and host response. Advances in Biological Research 4: 29–39.

    Google Scholar 

  125. Jalali, B.L. and Chand, H. 1988. Role of VA mycorrhiza in biological control of plant diseases. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K ). Univ. Madras, Madras, India,pp. 209–215.

    Google Scholar 

  126. Jarstfer, A.G. and Sylvia, D.M. 1992. Inoculum production and inoculation strategies for vesicular arbuscular mycorrhizal fungi. In: ‘Soil microbial technologies: Applications in agriculture, forestry and environmental management’ (ed. Metting, B.) Marcel Dekker, New York, pp. 349–377.

    Google Scholar 

  127. Jeffries, P. and Dodd, J.C. 1991. The use of mycorrhizal inoculants in forestry and agriculture. In: ‘Handbook of Applied Mycology. Vol. I. Soil and plants’ (eds. Arora, D.K., Rai., Mukerji, K.G. and Knudsen, G.R.) Marcel Dekker, New York. pp. 155–185.

    Google Scholar 

  128. Johnson, N.C. and Pfleger, F.L. 1992. VA mycorrhizae and cultural stresses. In: Mycorrhiza in sustainable agriculture’ (ed. Bethlenfalvay, G.J.) Wisconsin, Madison, U.S.A.

    Google Scholar 

  129. Jurinak,J.J. Dudley, L.M. Allen, M.F. and Knight, W.G. 1986. The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study. Soil Science 142: 255–261.

    Google Scholar 

  130. Kapoor, A. and Mukerji, K.G. 1988. Influence of VAM fungi and P levels of soybean growth in fumigated microplots. In: ‘Biofertilizers — Potentials and Problems’ (eds. Sen, S.P. and Palit, P.) Naya Prokash, Calcutta, pp. 259–263.

    Google Scholar 

  131. Kapoor, A. and Mukerji, K.G. 1990. A strategy for selection and application of VAM fungi. Current Trends in Mycorrhizal Research (eds. Jalali, B.L. and Chand, H.) Haryana Agricultural University, Hissar, pp. 139–140.

    Google Scholar 

  132. Kapoor A., Singh, V.P. and Mukerji, K.G. 1988. Studies on the phosphatases on mycorrhizal and non mycorrhizal Trigonella roots. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natrajan, K. ). University Madras, Madras, India, pp. 125–127.

    Google Scholar 

  133. Kapoor, A. and Mukerji, K.G. 1992. Distribution of vesicular arbuscular mycorrhiza in root zone of host plants in some Indian soils. In: ‘Root Ecology and its Practical Application’ (eds. Kutschera, L., Hübl, E., Lichtenegger, E., Persson, H. and Sobotik, M.) Verein für Wurzelforschung, Klangenfurt, Vienna, pp. 605–609.

    Google Scholar 

  134. Kaye, J.M., Pflenger, F.L. and Steward, E.L. 1984. Interaction of Glomus fasciculatum and Pythium ultimum on greenhouse grown poinsettia. Canadian Journal of Botany, 62: 1575–1579.

    Google Scholar 

  135. Kellam, M.K. and Schenck, N.C. 1980. Interaction between a vesicular arbuscular mycorrhizal fungus and root-knot nematode on soybean. Phytopathology, 70: 293–296.

    Google Scholar 

  136. Khare, A.K. and Thompson, J.P. 1991. Effects of vesicular arbuscular mycorrhizae on growth, phosphorus and zinc nutrition on maize in a vertisol. In: ‘froc. Second Asian Conference on Mycorrhiza’ (eds. Soerianegara, I. and Supriyanto ), SEAMEOBIOTROP, Indonesia, pp. 133–141.

    Google Scholar 

  137. Knight, W.G., Allen, M.F., Jurinak, J.J. and Dudley, L.M. 1989. Elevated carbon dioxide and solution phosphorus in soil with vesicular arbuscular mycorrhizal western wheat-grass. Soil Science Society of American Journal, 53: 1075–1082.

    Google Scholar 

  138. Konde, B.K., Tambe, A.D. and Ruiker, S.K. 1988. Yield of nitrogen and phosphorus uptake by onion as influenced by inoculation of VAM fungi and Azospirillum brasilense. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K. ). Univ. Madras, Madras, India, pp. 222–223.

    Google Scholar 

  139. Koske, R.E. and Polson, W.R. 1984. Are VA mycorrhizae required for sand dune stabilization? Bioscience, 34: 420–425.

    Google Scholar 

  140. Koslowski, S.D. and Boerner, R.E.J. 1989. Interactive effects of aluminium, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L.(Poaceae). Environmental Pollution, 28: 103–108.

    Google Scholar 

  141. Kothari, S.K., Marschner,H. and Romheld, V. 1990. Direct and indirect effects of VA mycorrhiza and rhizosphere microorganisms on mineral nutrition acquistion by maize (Zea mays L.) in a calcareous soil. New Phytologist, 116: 637–645.

    CAS  Google Scholar 

  142. Kothari, S.K., Marschner, H. and Romheld, V. 1991a. Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil, 131: 177–185.

    CAS  Google Scholar 

  143. Kothari. S.K., Marschner, H. and Romheld, V. 1991b. Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytologist, 117: 649–655.

    Google Scholar 

  144. Krishna, K.R. and Bagyaraj, D.J. 1983. Interaction between Glomus fasciculatus and Scierotium rolfsii in peanut. Canadian Journal of Botany, 41: 2349–2351.

    Google Scholar 

  145. Krishna, K.R. and Bagyaraj, D.J. 1986. Phenolics of mycorrhizal and uninfected groundnut var. MGS-7. Current Research, 15: 51–52.

    Google Scholar 

  146. Krishna, K.R., Shetty, K.E., Dart, P.J. and Anderews, D.J. 1985. Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl mellet. Plant and Soil, 86: 113–125.

    Google Scholar 

  147. Lambert, D.H. and Weidensaul, T.C. 1991. Element uptake by mycorrhizal soybean from sewage-sludge treated soil. Soil Science Society of American Journal, 55: 393–398.

    CAS  Google Scholar 

  148. Li, X.L., Marschner, H. and George, E. 1991. Acquisition of phosphorus and copper by VA mycorrhizal hyphae and root to shoot transport in white clover. Plant and Soil, 136: 49–57.

    CAS  Google Scholar 

  149. Linderman, R.G. 1985. Microbial interactions in the mycorrhizosphere. In: ‘Proceeding 6th North American Conference on Mycorrhizae’ (ed. Molina, R. ), University of Florida, Florida. U.S.A., pp. 117–120.

    Google Scholar 

  150. Linderman, R.G. and Bethlenfalvay, G.J. 1992. VA mycorrhiza and sustainable agriculture. Soil Science Society of America, Madison, WI.

    Google Scholar 

  151. Lin Xian-Gui and Hao Wen-Yin. 1988. Effects of VAM inoculation on growth of several kinds of plants. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K. ). University of Madras, Madras, India, pp. 231–232.

    Google Scholar 

  152. MacGuidwin, A.E. Bird, G.W. and Safir, G.R. 1985. Influence of Glomus fasciculatum on Meloidogyne hapla infecting Allium cepa. Journal of Nematology 17: 389–395.

    PubMed  CAS  Google Scholar 

  153. Mahadevan, A., Raman, N. and Natarajan, K. 1988. Mycorrhizae for green Asia. University of Madras, Madras, India, 351 p.

    Google Scholar 

  154. Manske, G.G.B. 1990. Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. Agricultural Ecosystems and Environment, 29: 273–280.

    Google Scholar 

  155. Melin, E. 1953. Physiology of mycorrhizal relations in plants. Annual Review of Plant Physiology, 4: 325–346.

    Google Scholar 

  156. Menge, J.A. 1982. Effect of soil fumigants and fungicides on vesicular arbuscular fungi. Phytopathology, 72: 1125–1132.

    Google Scholar 

  157. Menge, J.A. 1983. Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. Canadian Journal of Botany, 61: 1015–1204.

    Google Scholar 

  158. Menge, J.A. 1984. Inoculum production. In: ‘VA mycorrhiza’. (eds. Powell, C.L. and Bagyaraj, D.J.) CRC Press, Boca Raton, FL., pp. 187–203.

    Google Scholar 

  159. Menge, J.A., Johnson, E.L.V. and Platt, R.G. 1978. Mycorrhizal dependency of several citrus cultivars and three nutrient regimes. New Phytologist, 81: 553–559.

    CAS  Google Scholar 

  160. Mengel, K. and Kirkby, E.A. 1979. Principles of plant nutrition. International Potash Institute, Bern, Switzerland. 593 p.

    Google Scholar 

  161. Mercy, M.A., Shivashankar, G. and Bagyaraj, D.J. 1990. Mycorrhizal colonization in cowpea is host dependent and heritable. Plant and Soil, 121: 292–294.

    Google Scholar 

  162. Mexal, J. and Reid, C.P.P. 1973. The growth of selected mycorrhizal fungi in response to induced water stress. Canadian Journal of Botany, 51: 1579–1588.

    Google Scholar 

  163. Meyer, J.R. and Linderman, R.G. 1986. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry, 18: 191–196.

    Google Scholar 

  164. Miller, C.O. 1971. Cytokinin production by mycorrhizal fungi. In: ‘Mycorrhizae’. (ed. Hacskaylao, E.) USDA. Forest Service Miscellaneous Publication 1189, Washington, D.C., pp. 168–174.

    Google Scholar 

  165. Miller, R.M. and Jastrow, J.D. 1990. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biology and Biochemistry, 22: 579–584.

    Google Scholar 

  166. Mohandas, S. 1987. Field response of tomato (Lycopersicon esculentum Mill ‘Pusa Ruby’) to inoculation with a VA mycorrhizal fungus Glomus fasciculatum and with Azotobacter vinelandii. Plant Soil, 98: 295–297.

    CAS  Google Scholar 

  167. Mohankumar, V. and Mahadevan, A. 1984. Do secondary substances inbibit mycorrhizal association? Current Science, 55: 377–378.

    Google Scholar 

  168. Morandi, D., Bailey, J.A. and Gianinazzi-Pearson, V. 1984. Isoflavonoid accumulation in soybean roots infected with vesicular arbuscular mycorrhizal fungi. Physiological Plant Pathology, 24: 356–364.

    Google Scholar 

  169. Mosse, B. 1973. Advances in the study of vesicular arbuscular mycorrhiza. Annual Review of Phytopathology, 11: 171–176.

    Google Scholar 

  170. Mosse, B. 1981. Vesicular arbuscular mycorrhiza research for tropical agriculture. Research Bull. 194. Hawaii Institute of Tropical Agriculture and Human Resources. University Hawaii. 82 p.

    Google Scholar 

  171. Mosse, B. and Hepper, C.M. 1975. Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiological Plant Pathology, 5: 215–223.

    Google Scholar 

  172. Mosse, B. and Thompson, J.P. 1984. Vesicular arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Canadian Journal of Botany, 62: 1523–1530.

    CAS  Google Scholar 

  173. Mugnier, J. and Mosse, B. 1987. Vesicular arbuscular mycorrhizal infection in transformed root inducing T-DNA roots grown axenically. Phytopathology, 77: 1045–1050.

    Google Scholar 

  174. Mukerji, K.G., Bhattacharjee, M. and Mohan, M. 1982. Ecology of the Indian Endogonaceae. Angewandte Botanik, 56: 121–132.

    Google Scholar 

  175. Mukerji, K.G. and Dixon, R.K. 1992. Mycorrhizae in Reforestation. In: ‘Rehabitation of Tropical Rainforest Ecosystems: Research and Development Priorities’ (eds. Majid, N.M., Malik, I.A. Ab., Hamzah, Md. Z. and Jusoff, K. ). University Pertanian, Malaysia, Selangar, Malaysia, pp. 66–82.

    Google Scholar 

  176. Mukerji, K.G., Jagpal R., Bali, M. and Rani, R. 1991. The importance of mycorrhizae for roots. In: ‘Plant Roots and their Environment’ (eds. McMichael, B.L. and Persson, H.) Elsevier, Amsterdam, pp. 290–308.

    Google Scholar 

  177. Mukerji, K.G. and Kapoor, A. 1986. Occurrence and importance of vesicular arbuscular mycorrhizal fungi in semi arid regions of India. Forest Ecology and Management, 16: 117–126.

    Google Scholar 

  178. Mulligan, M.F., Smucker, A.J.M. and Safir, G.F. 1985. Tillage modifications of dry edible bean root colonization by VAM fungi. Agronomy Journal, 77: 140–144.

    Google Scholar 

  179. Murakami-Mizukami, Y., Yamamoto, Y. and Yamaki, S. 1991. Analysis of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizae. Soil Science and Plant Nutrition, 37: 291–298.

    CAS  Google Scholar 

  180. Negi, M. and Tilak, K.V.B.R. 1987. Response of moong bean (Vigna radiata var. aurens) to inoculation with Rhizobium sp. (Cowpea miscellany) and Glomus versiforme under varying levels of phosphorus. In: ‘Mycorrhizae round table’ (eds. Vanna, A.K., Oka, A.K., Mukerji, K.G., Tilak, K.V.B.R. and Janak Raj) IDRC and JNU, New Delhi, pp. 393–401.

    Google Scholar 

  181. Nelson, C.E., and Safir, G.R. 1982. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta, 154: 407–413.

    Google Scholar 

  182. Nelson, S.D. and Khan, S.U. 1992. Uptake of atrazine by hyphae of Glomus vesiculararbuscular mycorrhizae and root systems of maize (Zea mays L.). Weed Science, 40: 161–170.

    CAS  Google Scholar 

  183. Nemec, S. and Myhre, D. 1984. Virus-Glomus etunicatum interactions in citrus root stocks. Plant Disease, 68: 311–314.

    Google Scholar 

  184. Newman, E.I. and Reddell, P. 1987. The distribution of mycorrhizae among families of vascular plants. New Phytologist, 106: 745–751.

    Google Scholar 

  185. Nopamornbodi, O., Rojanasiriwong, W. and Thomsurakul, S. 1988. Production of VAM fungi, Glomus intraradices and G. mosseae in tissue culture. In: ‘Mycorrhizae for Green Asia’ (eds. Mahadeven, A., Raman, N. and Natarajan, K.) University of Madras, Madras, pp. 315–316.

    Google Scholar 

  186. Nopamornbodi, O., Thamsurakul, S., Vasuvat, Y. and Charoensook, S. 1988. Survival of VA mycorrhizal fungi after paddy. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K. ). Univ. Madras, Madras, India, pp. 241–242.

    Google Scholar 

  187. Nye, P.H. and Tinker, P.B. 1977. Solute movement in the soil-root system: Studies in ecology. Vol. 4. Blackwell scientific publications, Oxford.

    Google Scholar 

  188. Ocampo, J.A., Martin, J. and Hayman, D.S, 1980. Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytologist, 84: 27–35.

    Google Scholar 

  189. Owusu-Bennoah, E., and Mosse, B. 1979. Plant growth responses to vesicular arbuscular mycorrhiza. XI. Field inoculation responses in barley, lucerne and onion. New Phytologist, 83: 671–679.

    Google Scholar 

  190. Pacovsky, R.S. 1988. Influence of inoculation with Azospirillum brasiliense and Glomus fasciculatum on sorghum nutrition. Plant and Soil, 110: 283–287.

    CAS  Google Scholar 

  191. Pacovsky, R.S. Bethlenfalvay, G.J. and Paul, E.A. 1986. Comparisons between P-fertilized and mycorrhizal plants. Crop Science, 26: 151–156.

    Google Scholar 

  192. Patterson, N.A. Chet, I. and Kapulnik, Y. 1990. Effect of mycorrhizal inoculation on nodule initiation, activity and contribution to legume productivity. Symbiosis, 8: 9–30.

    Google Scholar 

  193. Peck, D.M., Thompson, J.P. and Haak, M.I., 1992. Effects of conservation tillage practices on vesicular-arbuscular mycorrhizae build up after a long fallow. (Abstract). International Symposium on management of mycorrhizae in agriculture, horticulture and forest. University of Westeren Australia, Perth. p. 130.

    Google Scholar 

  194. Plenchette, C., Fortin, J.A. and Furlan, V. 1983. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant and Soil, 70: 199–209.

    CAS  Google Scholar 

  195. Potty, V.P. 1988. Response of cassava (Manihot esculenta) to VAM inoculation in acid laterite soil. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K. ). University of Madras, Madras, India, pp. 246–249.

    Google Scholar 

  196. Powell, C.L. 1984. Field inoculation with VA mycorrhizal fungi. In: ‘VA mycorrhizae’ (eds. Powell, C.L. and Bagyaraj, D.J.) CRC Press, Boca Raton, Florida, pp. 205–222.

    Google Scholar 

  197. Ragupathy, S. and Mahadevan, A. 1993. Distribution of vesicular arbuscular mycorrhizae in plants and rhizosphere soils of tropical plains, Tamil Nadu, India. Mycorrhiza, 3: 123–136.

    Google Scholar 

  198. Raja, P. and Mahadevan, A. 1991. Axenic cultivation of VAM fungi–A review. Journal of Plant Science Research, 7: 1–6.

    Google Scholar 

  199. Raju, P.S., Clarke, R.B., Ellis, J.R., Duncan, R.R. and Marranville, J.W. 1990. Benefit and cost analysis and phosphorus efficiency of VA mycorrhizal fungi colonizations with sorghum (Sorghum bicolor) genotypes grown at varied phosphorus levels. Plant and Soil, 124: 199–204.

    CAS  Google Scholar 

  200. Raman, N. 1994. Mycorrhizal fungal inoculum: Current knowledge and research needs. Third Asian Conference on Mycorrhiza. Yogyakarta, Indonesia, 19–12 April, 1994. pp 32–35.

    Google Scholar 

  201. Raman, N. and Elumalai, S. 1991. Studies on mycorrhizal and actinorhizal association in Casuarina equisetifolia in Coramandal costal region. Journal of Tropical Forestry. 7: 138–150.

    Google Scholar 

  202. Raman, N. and Elumalai, S. 1992. Influence of phosphorus on cluster root formation by Casuarina equisetifolia in water culture. Indian Journal of Experimental Biology, 30: 928–929.

    Google Scholar 

  203. Raman, N., Nagarajan, N., Gopinathan, S. and Sambandan, K. 1993. Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biology and Fertility of Soil, 16: 76–78.

    Google Scholar 

  204. Raman, N. and Rajendran, V. 1991. Effect of pesticides on Glomus intraradices associated with Solanum melongena. In: Proc. Second Asian Conference on Mycorrhiza’ (eds. Soerianegara, I. and Supriyanto) SEAMEO-BIOTROP, Indonesia, pp 187–189.

    Google Scholar 

  205. Raman, N., Ravi. I. and Gnanaguru, M. 1994. Enhancement of indole-3-acetic acid in nodules of Prosopis juliflora inoculated with Glomus mosseae and Rhizobium. Indian Journal of Microbiology, 34: 33–35.

    Google Scholar 

  206. Ramaraj, B., Shanmugam, N. and Dwarakanath Reddy, A. 1988. Biocontrol of Macrophomina root rot of cowpea and Fusarium wilt of tomato by using VAM fungi. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan, A., Raman, N. and Natarajan, K ). University of Madras, Madras, India, pp. 250–251.

    Google Scholar 

  207. Rani, R. and Mukerji, K.G. 1990. The distribution of vesicular-arbuscular mycorrhizal fungi in India. Acta Microbilogica, 37: 3–7.

    CAS  Google Scholar 

  208. Reddy, P.P. 1974. Studies on the action of amino acids on the root knot nematode Meloidogyne incognita. Ph.D. Thesis, University Agriculture Science, Bangalore, India.

    Google Scholar 

  209. Reid, C.P.P. 1984. Mycorrhizae: A root-soil interface in plant nutrition. In: Microbial–plant interactions’. (eds. Todd R.L. and Giddens, J.E.). ASA Special Pub. 47. pp. 29–50.

    Google Scholar 

  210. Reid, C.P.P. and Bowen, G.D. 1979. Effects of moisture on VA mycorrhiza formation and root development in Medicago. In: ‘The soil-root interface’ (eds. Harley, J.L. and Russel, R.S.) Academic Press, London, pp. 211–215.

    Google Scholar 

  211. Rhodes, L.H. and Gerdemann, J.M. 1978. Translocation of calcium and phosphate by external hyphae of vesicular arbuscular mycorrhizae. Soil Science, 126: 125–126.

    CAS  Google Scholar 

  212. Rose, S.L. and Youngberg, C.F. 1981. Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular-arbuscular mycorrhizae on growth, nodulation and nitrogen fixation. Canadian Journal of Botany, 59: 34–39.

    CAS  Google Scholar 

  213. Rosendahl, S. 1985. Interactions between the vesicular arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. Phytopathologische Zeitschrift, 114: 31–40.

    Google Scholar 

  214. Saleh, H. and Sikora, R.A. 1984. Relationship between Glomus fasciculatum root colonization on cotton and its effect of Meloidogyne incognita. Nematologica, 30: 230–237.

    Google Scholar 

  215. Sanni, S.O. 1976. Vesicular-arbuscular mycorrhiza in some Nigerian soils. The effect of Gigaspora gigantea on the growth of rice. New Phytologist, 77: 673–674.

    Google Scholar 

  216. Schenck, N.C. and Kellam, M.K. 1978. The influence of vesicular arbuscular mycorrhizae on disease development. Bulletin 799: Florida Agriculture Experiment Station 16 p.

    Google Scholar 

  217. Schenck, N.C. and Smith, G.S. 1982. Response of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four temperatures. New Phytologist, 92: 193–201.

    Google Scholar 

  218. Schoenbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In: ‘Soil borne plant pathogens’ (eds. Schippers, B. and Gams, W.) Academic Press, New York, pp. 271–280.

    Google Scholar 

  219. Schoenbeck, F. 1980. Endomycorrhizae: Ecology, function and phytopathological aspects. Forum Microbiology, 3: 90–96.

    Google Scholar 

  220. Schoenbeck, F. and Dehne, H.W. 1977. Damage to mycorrhizal cotton seedlings by Thielaviopsis basicola. Plant Disease Reporter, 61: 266–268.

    Google Scholar 

  221. Schoenbeck, F. and Dehne, H.W. 1979. Untersuchungenzum Einflunder endotrophen mycorrhiza auf planzenkrankheiten, 4. Pilzfiche sprossparasiten Olpidium brassicae, TMV. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 86: 103–112.

    Google Scholar 

  222. Schoenbeck, F. and Dehne, H.W. 1981. Mycorrhiza and plant health. Gesellschaft Pflanzen, 33: 186–190.

    Google Scholar 

  223. Secila, J. and Bagyaraj, D.J. 1987. Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas. Canadian Journal of Microbiology, 33: 1069–1073.

    Google Scholar 

  224. Sharma, A.K., Johri, B.N. and Gianinazzi, S. 1992. Vesicular-arbuscular mycorrhizae in relation to plant disease. World Journal of Microbiology and Biotechnology, 8: 559–563.

    Google Scholar 

  225. Sieverding, E. 1985. Influence of method of VA mycorrhizal inoculum placement on the spread of root infection in field grown cassava. Journal of Agronomy and Crop Science, 154: 161–170.

    Google Scholar 

  226. Singh, K., Dineshkumar, Subba Rao, N.S. and Varma, A.K. 1987. Mycorrhizal fungi stimulate legume growth and root nodulation in dry arid soils. II. Effect of dual infection of Rhizobium and VA endomycorrhizal spores on soybean (Glycine max Merril). In: ‘Mycorrhizae round table’ (eds. Varma, A.K., Oka, A.K., Mukerji, K.G., Tilak, K.V.B.R. and Janak Raj) IDRC and JNU, New Delhi, pp. 372–392.

    Google Scholar 

  227. Singh, K. and Varma, A. 1987. Mycorrhizal fungi stimulate legume growth and root nodulation in dry and arid soils. I. Effect of dual infection of Rhizobium and VA endomycorrhizal spores on a tropical legume-bengal gram (Citer arietinum L.) In ‘Mycorrhizae round table’ (eds. Varma, A.K., Oka, A.K., Mukerji, K.G., Tilak, K.V.B.R. and Janak Raj) IDRC and JNU, New Delhi, pp. 356–371.

    Google Scholar 

  228. Sitaramiah, K. and Sikora, R.A. 1982. Effect of the mycorrhizal fungus Glomus fasciculatus on the host-parasitic relationship of Rotylenchus reniformis in tomato. Nematologica, 28: 412–419.

    Google Scholar 

  229. Smith, G.S., Hussey, R.S. and Roncadori, R.W. 1986. Penetration and post-infection development of Meloidogyne incognita as affected by Glomus intraradices and phosphorus. Journal of Nematology 18: 429–435.

    PubMed  CAS  Google Scholar 

  230. Smith, G.S. and Kaplan, D.T. 1988. Influence of mycorrhizal fungus, phosphorus and burrowing nematode interactions on growth of rough lemon citrus seedlings. Journal of Nematology, 20: 539–544.

    PubMed  CAS  Google Scholar 

  231. Smith, G.S., Roncadori, R.W. and Hussey, R.S. 1986. Interaction of endo-mycorrhizal fungi, superphosphate and Meloidogyne incognita on cotton in microplot and field studies. Journal of Nematology, 18: 208–216.

    PubMed  CAS  Google Scholar 

  232. Smith, S.E. and Bowen, G.D. 1979. Soil temperature, mycorrhizal infection and nodulation of Medicago truncatula and Trifolium subterraneum. Soil Biology and Biochemistry, 11: 469–473.

    Google Scholar 

  233. Smith, S.E. and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbiont in vesicular-arbuscular mycorrhizal plants. Annual Review Plant Physiology and Molecular Biology, 39: 221–244.

    CAS  Google Scholar 

  234. Smith, S.E., Gianinazzi-Pearson, V., Koide, R. and J.W.G. Cairney, 1994. Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil, 159: 103–113.

    CAS  Google Scholar 

  235. Smith, T.F. 1978. Some effects of crop protection chemicals on the distribution and abundance of vesicular arbuscular endomycorrhizas. Journal of Australian Institute of Agricultural Sciences, 44: 82–88.

    Google Scholar 

  236. Sreenivasa, M.N. and Bagyaraj, D.J. 1988a. Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum inoculum. Plant and Soil, 106: 289–290.

    Google Scholar 

  237. Sreenivasa, M.N. and Bagyaraj, D.J. 1988b. Selection of a suitable substrate for mass multiplication of Glomus fasciculatum. Plant and Soil, 109: 125–127.

    Google Scholar 

  238. Sreenivasa, M.N. and Bagyaraj, D.J. 1989. Use of pesticides for mass production of vesicular arbuscular mycorrhizal inoculum. Plant and Soil, 119: 127–132.

    CAS  Google Scholar 

  239. Stewart, E.L. and Pfleger, F.L. 1977. Development of poinsettia as influenced by endomycorrhizae, fertilizer and root rot pathogens Pythium ultimatum and Rhizoctonia solani. Florit’s Review, 159: 79–80.

    Google Scholar 

  240. Stoppler, H., Kolsch, E. and Vogtmann, H. 1990. Vesicular arbuscular mycorrhiza in varieties of winter wheat in a low external input system. Biological Agriculture and Horticulture, 7: 191–199.

    Google Scholar 

  241. Stribley, D.P. 1987. Mineral nutrition. In: ‘Ecophysiology of VA mycorrhizal plants (ed. Safir, G.R.) CRC Press, Boca Raton, FL., pp. 59–70.

    Google Scholar 

  242. Strullu, D.G. and Plenchette, C. 1991. The entrapment of Glomus sp. In: alginate beads and their use as root inoculum. Mycological Research, 95: 1194–1196.

    Google Scholar 

  243. Strullu, D.G., Romand, C., Callac, P., Teoule, E. and Demarly, Y. 1989. Mycorrhizal synthesis in vitro between Glomus spp. and artificial seeds of alfalfa. New Phytologist, 113: 545–548.

    Google Scholar 

  244. Subba Rao, N.S., Tilak, K.V.B.R. and Singh, C.S. 1985a. Effect of combined inoculation of Azospirillum brasilense and vesicular-arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil, 84: 283–286.

    Google Scholar 

  245. Subba Rao, N.S., Tilak, K.V.B.R. and Singh, C.S. 1985b. Synergistic effect of vesiculararbuscular mycorrhizas and Azospirillum brasilense on the growth of barley in pots. Soil Biology and Biochemistry, 17: 119–121.

    Google Scholar 

  246. Sylvia, D.M. and Jarstfer, A.G. 1992. Sheared-root inocula of vesicular arbuscular mycorrhizal fungi. Applied Environmental Microbiology, 58: 229–232.

    CAS  Google Scholar 

  247. Sylvia, D.M. and Jarstfer, A.G. 1994. Production of inoculum and inoculation with arbuscular mycorrhizal fungi. In: ‘Management of mycorrhizas in agriculture, horticulture and forestry’ (eds. Robson, A.D., Abbott, L.K. and Malajczuk, N.) Kluwer Academic, The Netherlands, pp. 231–238.

    Google Scholar 

  248. Sylvia, D.M. and Neal, L.H. 1990. Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytologist, 115: 303–310.

    CAS  Google Scholar 

  249. Thompson, J.P. 1986. Soilless cultures of vesicular arbuscular mycorrhizae of cereals: Effects of nutrient concentration and nitrogen source. Canadian Journal of Botany, 64: 2282–2294.

    Google Scholar 

  250. Thompson, J.P. 1987. Decline of vesicular arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Australian Journal of Agricultural Research, 38: 847–867.

    CAS  Google Scholar 

  251. Thompson, J.P. 1990. Soil sterilization methods to show VA-mycorrhizae aid P and Zn nutrition of wheat in vertisols. Soil Biology and Biochemistry, 22: 229–240.

    CAS  Google Scholar 

  252. Thompson, J.P. 1991. Improving the mycorrhizal conditions of the soil through cultural practices and effects of growth and phosphorus uptake by plants. In: ‘Phosphorus nutrition of grain legumes in the semi-arid tropics’. (eds. Johansen, G., Lee, K.K. and Sahrawat, K.L. ), ICRISAT, Patancheru, A.P., India, pp. 117–137.

    Google Scholar 

  253. Thompson, J.P. 1994. What is the potential for the management of mycorrhizas in agriculture? In ‘Management of mycorrhizas in agriculture, horticulture and forestry’ (eds. Robson, A.D., Abbott, L.K. and Malajczuk, N.) Kluwer Academic, Netherlands, pp. 191–200.

    Google Scholar 

  254. Tilak, K.V.B.R., Li, C.Y. and Ho, I. 1989. Occurrence of nitrogen-fixing Azospirillum in vesicular-arbuscular mycorrhizal fungi. Plant and Soil, 116: 286–288.

    Google Scholar 

  255. Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29: 729–743.

    Google Scholar 

  256. Tisdall, J.M. and Oades, J.M. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science, 33: 141–163.

    CAS  Google Scholar 

  257. Toth, R., Toth, D., Starke, D. and Smith, D.R. 1990. Vesicular arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Canadian Journal of Botany, 68: 1039–1044.

    Google Scholar 

  258. Trappe, J.M. 1981. Mycorrhizae and productivity of arid and semiarid range lands. In: ‘Advances in food producing systems for arid and semi arid lands’. Academic Press. New York, pp. 581–599.

    Google Scholar 

  259. Trappe, J.M., Molina, R. and Castellano, M.A. 1984. Reactions of mycorrhizal fungi and mycorrhizal formation to pesticides. Annual Review of Phytopathology, 22: 331–359.

    CAS  Google Scholar 

  260. Van Kessel, C. Singleton, P.W. and Hoben, H.J. 1985. Enhanced N-transfer from soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiology 79: 562563.

    Google Scholar 

  261. Volpin, H. Elkind, Y., Okon, Y. and Kapulnik, Y. 1994. A vesicular arbuscular mycorrhizal fungus Glomus intraradix induces a defense response in alfalfa roots. Plant Physiology, 104: 683–689.

    CAS  Google Scholar 

  262. Wallace, H.R. 1973. Nematode ecology and plant disease. Alden Press, London.

    Google Scholar 

  263. Wellings, N.P. and Thompson, J.P. 1991. Effects of VAM and P fertilizers rate on Zn fertilizers requirements of linseed. In: Proc. Second Asian Conference on Mycorrhiza’ (eds. Soerianegara, I, and Supriyanto) SEAMEO-BIOTROP, Indonesia, pp. 143–152.

    Google Scholar 

  264. White, J.A. and Brown, M.J. 1979. Ultrastructural and X-ray analysis of phosphorus granules in a vesicular arbuscular mycorrhizal fungus. Canadian Journal of Botany, 57: 2812–2818.

    CAS  Google Scholar 

  265. Wood, T. 1991. Mycorrhizal fungi: Challenges for commercialization. In: ‘Fungal biotechnology. Hand book of Applied Mycology, Vol. 4’. (eds. Arora, D.K., Elander, R.P. and Mukerji, K.G.) Marcel and Dekker, New York, pp. 823–847.

    Google Scholar 

  266. Yost, R.S. and Fox, R.L. 1979. Contribution of mycorrhizae to the P nutrition of crops growing on an oxisol. Agronomy Journal, 71: 903–908.

    CAS  Google Scholar 

  267. Zambolim, L. and Schenck, N.C. 1983. Reduction of the effects of pathogenic root infecting fungi on soybean by the mycorrhizal fungus, Glomus mosseae. Phytopathology, 73: 1402–1405.

    Google Scholar 

  268. Zobel, R.W., Del Tredici, P. and Torrey, J.G. 1976. Method of growing plants aeroponically. Plant Physiology, 57: 344–346.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raman, N., Mahadevan, A. (1996). Mycorrhizal research — a priority in agriculture. In: Mukerji, K.G. (eds) Concepts in Mycorrhizal Research. Handbook of Vegetation Science, vol 19/2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1124-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1124-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4660-4

  • Online ISBN: 978-94-017-1124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics