Skip to main content

Vesicular arbuscular mycorrhiza — an overview

  • Chapter
Concepts in Mycorrhizal Research

Part of the book series: Handbook of Vegetation Science ((HAVS,volume 19/2))

Abstract

Living organisms in the biosphere exhibit a number of interactions which either alter their environment and/or the size and composition of each other’s populations. Of these, perhaps the most striking relationship is ‘symbiosis’ in which the partners live in a state of physical and physiological equilibrium and derive benifit from each other. There exist a number of plant-fungus relationships which are beneficial to both. They are called mycorrhiza. These are of various types but this chapter will give emphasis on the Endomycorrhiza also referred to as Vesicular-Arbuscular Mycorrhiza (VAM) or Arbuscular Mycorrhiza (AM). Vesicular Arbuscular Mycorrhiza (VAM) is one such association where fungal members of order Glomales colonize roots of higher plants. The fungal symbiont gets shelter and food from the plant which in turn aquires an array of benefits ranging from better uptake of phosphorus and relatively immobile micronurients like zinc and copper, increase in Nitrogen fixing capacity of leguminous plant species, salinity and drought tolerance, maintainence of water balance, increased rate of photosynthesis to overall increase in plant growth and development. Mycorrhizal plants show higher tolerance to high soil temperatures and various soil and root borne pathogens. In Eutrophic soil these plants can take up nitrogen in the form of ammonia. Seedlings which are colonized by these fungi perform better during transplantation. The mycorrhizal plants are also more tolerant towards heavy metal toxicity. A general lack of host-fungus specificity is evident by their widespread geographical distribution and also by the fact that almost eighty percent of the plant species show such association. A lot of work done in the past few decades has enabled these fungi to emerge as a potential biofertilizer; a cheap and environment friendly alternative to expensive, petroleum based chemical fertilizers. This aspect especially gains significance for a developing country like India where judicious and large scale utilization of this technology can prove very useful for getting maximum and long term gains in various wasteland reclamation, reforestation and afforestation programmes apart from giving a much needed thurst in the production of important agricultural crops on which the Economy of the country is dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.K. and Robson, A.D. 1984. The effect of mycorrhiza on plant growth. In `VA Mycorrhiza’ (eds. Powell, C.L., Bagyaraj, D.J. ). CRC Press. Boca Raton, Florida, pp. 113–130.

    Google Scholar 

  2. Abbott, L.K. and Robson, A.D. 1985. The effect of soil pH on the formation of VA mycorrhiza by two species of Glomus. Australian Journal of Soil Research, 23: 253–261.

    Google Scholar 

  3. Abbott, L.K. and Robson, A.D. 1991. Factors influencing the occurrence of vesicular arbuscular mycorrhizas. Agriculture Ecosystem and Environment, 35: 121–150.

    Google Scholar 

  4. Abbott, L.K., Robson, A.D. and De Boer, G. 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus Glomus fàsiculatuna. New Phytologist, 91: 437–446.

    Google Scholar 

  5. Aist, J.R. 1976. Papillae and related wound plugs of plant cells. Annual Review of Phytopathology, 14: 146.

    Google Scholar 

  6. Allen, M.F., Moore, T.S. and Christensen, M. 1980. Phytochromone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increase in the host plant. Canadian Journal of Botany, 58: 371–374.

    CAS  Google Scholar 

  7. Allen, M.F., Smith, N.K., Moore, T.S. and Christensen, M. 1981. Comparative water relations and photosynthesis of mycorrhizal and non mycorrhizal Bouteloua gracilis (HBK) Lag ex steud. New Phytologist, 88: 683–693.

    Google Scholar 

  8. Allen, M.F., Moore, T.S. and Christensen, M. 1982. Phytochromone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin–like subtances and abscisic acid in the host plant. Canadian Journal of Botany, 60: 468–471.

    CAS  Google Scholar 

  9. Angle, J.S. and Heckman, J.R. 1986. Effect of soil pH and sewage sludge on VA mycorrhizal infection of soybeans. Plant and Soil, 93: 437–441.

    Google Scholar 

  10. Armes, J., Vilarino, A. and Sainz, M. 1989. Effect of vesicular-arbuscular mycorrhizal fungi on Mn uptake by red clover. Agriculture Ecosystem and Environment, 29: 1–4.

    Google Scholar 

  11. Asimi, S., Gianinazzi-Pearson, V. and Gianinazzi, S. 1980. Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscular mycorrhizae and Rhizobium in Soybeans. Canadian Journal of Botany, 28: 2200–2205.

    Google Scholar 

  12. Auge, R.M. and Duan, X. 1991. Mycorrhizal fungi and non-hydraulic root signals of soil drying. Plant Physiology, 97: 821–824.

    PubMed  CAS  Google Scholar 

  13. Auge. R.M. and Stodola. A.J.W. 1990. An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plant. New Phytologist, 115: 285–295.

    Google Scholar 

  14. Auge, R.M., Schekel, K.A. and Wample, R.L. 1986a. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytologist, 103: 107–116.

    Google Scholar 

  15. Auge, R.M., Schekel, K.A. and Wample, R.L. 1986b. Osmotic adjustment in leaves of VA mycorrhizal and non mycorrhizal rose plants in response to drought stress. Plant Physiology, 82: 765–770.

    PubMed  CAS  Google Scholar 

  16. Azcon, T. and Ocampo, J.A. 1981. Factors affecting the vesicular arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytologist, 87: 677–685.

    CAS  Google Scholar 

  17. Azcon, R., Azcon, G., De Aguilar, C. and Barea, J.M. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytologist, 80: 359–364.

    CAS  Google Scholar 

  18. Azcon, R., Barea, J.M. and Hayman, D.S. 1976. Utilization of rock phosphate in alkaline soil by plant inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biology Biochemistry, 8: 135–138.

    CAS  Google Scholar 

  19. Azcon-Aguilar, C., Gianinazzi-Pearson, V., Fardaeu, J.C. and Gianinazzi, S. 1986. Effect of vesicular-arbuscular mycorrhizal fungi and phosphate solubilising bacteria on growth and nutrition of soybean in a neutral-calcareous soil amended with 32p 45ca tricalcium phosphate. Plant and Soil, 96: 3–15.

    CAS  Google Scholar 

  20. Bagyaraj, D.J. 1991. Ecology of Vesicular-arbuscular mycorrhiza. In `Handbook of Applied Mycology’ (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.R. ). Vol.I Soil and Plants. Marcel Dekker, Inc., New York. Basel, pp. 3–34.

    Google Scholar 

  21. Bagyaraj, D.J. and Menge, J.A. 1978. Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere mycoflora and plant growth. New Phytologist, 80: 567–573.

    Google Scholar 

  22. Bagyaraj, D.J., Manjunath, A. and Reddy, D.D.R. 1979. Interaction of vesiculararbuscular mycorrhiza with root knot nematodes in tomato. Plant and Soil, 51: 397–403.

    Google Scholar 

  23. Baker, K.F. and Cook, R.J. 1982. In: Biological control of plant pathogens. W.H. Freeman & Co., San Francisco, California, U.S.A., pp. 433.

    Google Scholar 

  24. Barea, J.M. 1986. Importance of hormones and root exudates in mycorrhizal phenomena. In Physiological and Genetical Aspects of mycorrhizae, (eds. Gianinazzi-Pearson, V. and Gianinazzi, S.) Paris: INRA, pp. 177–87.

    Google Scholar 

  25. Barea, J.M. and Azcon-Aguilar, C. 1982. Production of plant growth regulating substances by the vesicular arbuscular mycorrhizal fungus Glomus mosseae. Applied and Environment Microbiology, 43: 810–913.

    CAS  Google Scholar 

  26. Barea, J.M., Azcon, R. and Hayman, D.S. 1975. Possible synergistic interactions between Endogone and phosphate-solubilizing bacteria in low phosphate soils. In `Endomycorrhizas’ (eds. Sander, F.E., Mosse, B. and Tinker, P.B. ), Academic Press, London. pp. 409–417.

    Google Scholar 

  27. Barea, J.M., Brown, M.E. and Mosse, B. 1973. Association between VA mycorrhiza and Azotobacter, Rothemsted Experimental Station Report for 1972, pp. 81–82.

    Google Scholar 

  28. Baylis, G.T.S. 1975. The magnolioid mycorrhizal and mycotrophy in root systems derived from it. In `Endomycorrhizas’ (eds. Sander, F.E., Mosse, B. and Tinker, P.B. ), Academic Press, London, pp. 373–389.

    Google Scholar 

  29. Becard, G. and Piche, Y. 1989. New aspects on the aquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus Gigaspora margarita, New Phytologist, 172: 177.

    Google Scholar 

  30. Becker, W.N. 1976. Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pyrenochaeta terrestris. Ph.D. dissertation, Duke University, Durham, pp. 147.

    Google Scholar 

  31. Beever, R.E. and Burns, D.J.W. 1980. Phorphorus uptake, storage and utilization by fungi. Advances in Botanical Research, 8: 128–219.

    Google Scholar 

  32. Berch, S.M. 1986. Endogonaceae: Taxonomy, specificity fossil record, phylogeny. In `Frontiers in Applied Microbiology’ Vol. 2. (eds. Mukerji, K.G., Pathak, N.C. and Singh, V.P. ), India Print House Lucknow, pp. 161–186.

    Google Scholar 

  33. Berta, G., Sgorbati, S., Solar, V., Fuscone, A., Trotta, A., Citterio, A., Bottone, M.G., Sparvoli, E. and Scannerini, S. 1990. Vesicular arbuscular mycorrhiza. New Phytologist, 114: 199–205.

    Google Scholar 

  34. Bertheau, Y., Gianinazzi-Pearson, V. and Gianinazzi, S. 1980. Developepment et erpression de l’association endomycoshizienna chez le ble. I. Mise en evidence d’un effect varietal. Annales De Amelioration Des Plantes, 30: 67–78.

    Google Scholar 

  35. Bethlenfalvay, G.J. and Franson, R.L. 1989. Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12: 952–970.

    Google Scholar 

  36. Bethlenfalvay, G.J., Bayne, H.G. and Pacovsky R.S. 1983. Parasitic and mutualistic association between a mycorrhizal fungus and soybean. The effect of phosphorus on host plant-endophyte interactions. Physiologia Plantarum, 57: 543–548.

    CAS  Google Scholar 

  37. Bethlenfalvay, G.J., Brown, M.S. Ames, R.N. and Thomas, R.S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiologia Plantarum, 72: 565–571.

    CAS  Google Scholar 

  38. Bethlenfalvay, G.J., Brown M.S. and Franson, R.L. 1990. The Glysine–Glomus–Bradyrhizobium symbiosis, X. Relationships between leaf gas exchange and plant and soil water status in nodulated, mycorrhizal soybean under drought stress. Plant Physiology, 94: 723–728.

    PubMed  CAS  Google Scholar 

  39. Bethlenfalvay, G.J., Brown M.S. and Pacovsky, R.S. 1982. Relationships between host and endophyte development in mycorrhizal soybeans. New Phytologist, 90: 537–543.

    Google Scholar 

  40. Bethlenfalvay, G.J., Pacovsky, R.S. and Brown, M.S. 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean, developoment of the endophyte. Phytopathlolgy, 72: 894–896.

    CAS  Google Scholar 

  41. Bhandhari, N.N. and Mukerji, K.G. 1993. `The Houstorium’ Research Studies Press Ltd., England. pp. 308.

    Google Scholar 

  42. Bird, G.W., Rich, J.R. and Glover, S.U. 1974. Increased endo-mycorrhizae of cotton roots in soil treated with nematicides. Phytopathology, 64: 48–51.

    CAS  Google Scholar 

  43. Blair, D.A., Peterson, R.L. and Bowley, S.R. 1988. Nuclear DNA content in root cells of Lotus and Trifolium colonized by VAM fungus, Glomus versiforrne. New Phytologist, 109: 167–170.

    CAS  Google Scholar 

  44. Bonfante-Fasolo, P. 1984. Anatomy and Morphology of VA mycorrhizal, In `VA mycorrhizas’, (eds. Powell C.L. and Bagyaraj, D.J.). CRC Press, Boca Raton. Florida, U.S.A.

    Google Scholar 

  45. Bonfonte-Fasolo, P. 1988. The role of the cell wall a signal in mycorrhizal associations, in cell to cell signal in plant, Animal, and Microbial Symbioses, NATO ASI Ser., (eds. Scannerini, S., Smith, D.G. Bonfante-Fasolo, P., and Gianinazzi-Pearson, V.), Springer-Verlag, Berlin, pp. 219.

    Google Scholar 

  46. Bonfonte-Fasolo, P. and Grippiolo, R. 1982. Ultrastructural and cytochemical changes in the wall of a vesicular–arbuscular mycorrhizal fungus during symbiosis. Canadian Journal of Botany. 60: 2303–2312.

    Google Scholar 

  47. Bonfante-Fasolo, P. and Scannerini, S. 1992. The cellular basis of plant - fungus interchanges in mycorrhizal association. In `Functioning in Mycorrhizae’ (ed. Allen, M. ), Academic Press, San Diego.

    Google Scholar 

  48. Bonfonte-Fasolo, P., Vian, B. and Faccio, A. 1990. A texture of host cell walls in mycorrhizal leeks. Agriculture Ecosytems Environment. 29: 51.

    Google Scholar 

  49. Bolan, N.S., Robson, A.D., Banow, N.J., and Dylmore, L.A.G. 1984. Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biology Biochemistry, 16: 299–304.

    CAS  Google Scholar 

  50. Bowen, G.D. 1980. Mycorrhizal roles in tropical plants and ecosystems. In `Tropical Mycorrhiza Research’ (ed. Mikola), Clarendon Press, Oxford, pp. 165–190.

    Google Scholar 

  51. Bowen G.D, Skinner, M.P. and Bevege D.I. 1974. Zinc uptake by mycorrhizal and uninfected roots of Pious radiata and Araucaria cunninghamii. Soil Biology Biochemistry, 6: 141–144.

    CAS  Google Scholar 

  52. Bracker, C.E. and Littlefield, L.J. 1973: Structural concepts of host pathogen interfaces. In `Fungal pathogenicity and plants response’ (eds. Byrde, R.J.W., Cutting, C.V. ). Academic Press, London, New York, pp. 159–317.

    Google Scholar 

  53. Bradbury, S.M., Peterson, R.L. and Bowley, S.R. 1991. Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytologist, 119: 115–120.

    Google Scholar 

  54. Brown, M.E. and Can, G.H. 1979. Effects on plant growth of mixed inocula of VA endophytes root microorganisms. Rothamsted Experimental Station Report for 1979, Part 1, pp. 187.

    Google Scholar 

  55. Brundrett, M. and Kendrik, B. 1990. The root and mycorrhizas of herbaceous woodland plants II. Structural aspects of morphology. New Phytologist, 114: 469.

    Google Scholar 

  56. Brundrett, M.C., Piche, Y. and Peterson, R.L. 1984. A developmental study of the early stage in vesicular - arbuscular mycorrhiza formation, Canadian Journal of Botany, 63: 184.

    Google Scholar 

  57. Buwalda, J.G. and Goh, K.M. 1982. Host-fungus competition for carbon as a cause of growth depressions in vesicular–arbuscular ryegrass. Soil Biology Biochemistry, 14: 103–106.

    CAS  Google Scholar 

  58. Buwalda, J.G., Stribley, D.P. and Tinker, P.B. 1985. Vesicular-arbusular mycorrhizae of winter and spring cereals. Journal of Agriculture Science, 104: 649–657.

    Google Scholar 

  59. Cade-Menun., B.J., Berch, S.M. and Bomke, A.A. 1991. Seasonal colonization of winter wheat in south coastal British Columbia by vesicular–arbuscular mycorrhizal fungi. Canadian Journal of Botany, 69: 78–86.

    Google Scholar 

  60. Callow, J.A., Capaccio, L.C.M., Parrish, G. and Tinker, P.B. 1978. Detection and estimation of polyphosphate in vesicular–arbuscular mycorrhizas. New Phytologist, 80: 125–134.

    CAS  Google Scholar 

  61. Capaccio, L.C.M. and Callow, J.A. 1982. The enzymes of polyphosphate metabolism in vesicular-arbuscular mycorrhizas. New Phytologist, 91: 81–97.

    CAS  Google Scholar 

  62. Carling, D.E. and Brown, M.F. 1980. Relative effect of vesicular–arbuscular mycorrhizal fungi on the growth and yield of soybeans. Soil Science Society of American Journal, 44: 525–531.

    Google Scholar 

  63. Carling, D.E. and Brown, M.F. 1982. Anatomy and physiology of vesicular-arbuscular and non mycorrhizal roots. Phytopathology, 72: 1108–1114.

    Google Scholar 

  64. Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11: 233–260.

    CAS  Google Scholar 

  65. Clark, R.B. 1983. Plant genotype differences in the uptake, translocation accumulation and use of mineral elements required for plant growth. Plant and Soil 72: 175–196.

    CAS  Google Scholar 

  66. Clarkson, D.T. 1985. Factors affecting mineral nutrition acquisition by plants. Annual Review of Plants Physiology, 36: 77–115.

    CAS  Google Scholar 

  67. Cooper, K.M. 1975. Growth responses to the formation of endotrophic mycorrhizae in Solanurn, Leptospernum and New Zealand ferns. In Endomycorrhizas. (eds. Sanders, F., Mosse, B. and Tinker, P.B. ). Academic Press, London and New York, pp. 391–407.

    Google Scholar 

  68. Cooper, K.M. and Grandison, G.S. 1986. Interaction of vesicular-arbuscular mycorrhizal fungi and root knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Annals of Applied Biology, 108: 555–565.

    Google Scholar 

  69. Cooper, K.M. and Losel, D. 1978. Lipid physiology of vesicular arbuscular mycorrhiza. 1. Composition of lipids in roots of onion clover and ryegrass infected with Glomus mosseae. New Phytologist, 80: 143–151.

    CAS  Google Scholar 

  70. Cooper, K.M. and Tinker, P.B. 1978. Translocation and tranfer of nutrients in vesicular–arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phoshorus. New Phytologist, 88: 327–339.

    Google Scholar 

  71. Cox, G. and Sanders, F.E. 1974. Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza, New Phytologist, 73: 901–912.

    Google Scholar 

  72. Cox, G. and Tinker, P.B. 1976. Translocation and transfer of nutrients in vesicular–arbuscular mycorrhiza. I. The arbuscule and phosphorus transfer, a quantitative ultra-structural study. New Phytologist, 77: 371–378.

    CAS  Google Scholar 

  73. Cox, G., Moran, K.J., Sanders, F.E., Nockolds, C. and Tinker, P.B. 1980. Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas III. Polyphosphate granules and phosphorus translocation. New Phytologist, 84: 649–659.

    CAS  Google Scholar 

  74. Cox, G., Sander, F.E., Tinker, P.B. and Wild, J.A. 1975. Ultra–structrual evidence relating to host endophyte transfer in a vesicular-arbuscular mycorrhiza. In `Endomycorrhizas’. (eds. Sanders, F.E., Mosse, B. and Tinker, P.B. ). Academic Press, London and New York, pp. 297–312.

    Google Scholar 

  75. Cress, W.A., Throneberry G.O. and Lindsey, D.L. 1979. Kinetics of phosphorus absorption by mycorrhizal and non mycorrhizal tomato roots. Plant Physiology, 64: 484–487.

    PubMed  CAS  Google Scholar 

  76. Crush, J.R. 1974. Plant growth responses to vesicular–arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytologist, 73: 743–749.

    CAS  Google Scholar 

  77. Daft, M.J. and EI-Giahmi, A.A. 1976. Studies on nodulated and mycorrhizal peanuts. Annals of Applied Biology, 83: 273–276.

    Google Scholar 

  78. Daft, M.J. and EI-Giahmi, A.A. 1978. Effect of vesicular–arbuscular mycorrhizal on plant growth. VIII. Effects of defoliation and light on selected hosts. New Phytologist, 80: 365–372.

    CAS  Google Scholar 

  79. Daft, M.J. and Okusanya, B.O. 1973. Effect of Endogone mycorrhiza on plant growth VI. Influence of infection on the anatomy and reproductive development in four hosts. New Phytologist, 72: 1333–1339.

    Google Scholar 

  80. Daniels, B.A. and Trape, J.M. 1980. Factors affecting spore germination of the vesicular–arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia, 72: 457–471.

    CAS  Google Scholar 

  81. Davis, R.M. and Menge, J.A. 1980. Influence of Glomus fasciculatum and soil phosphorus on Phytophthora root rot of citrus. Phytopathology, 70: 447–452.

    CAS  Google Scholar 

  82. Davis, R.M., Menge, J.A. and Erwin, D.C. 1979. Influence of Glomus fasciculatus and soil phorphorus on Verticillium wilt of cotton. Phytopathology, 69: 453–456.

    CAS  Google Scholar 

  83. Davis, R.M., Menge, J.A. and Zentmyer, G.A. 1978. Influence of vesicular - arbuscular mycorrhizae on Phytophthora root rot of three crop plants. Phytopathology, 68: 1614 1616.

    Google Scholar 

  84. Dehne, H.W. 1982. Interactions between vesicular–arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72: 1115–1119.

    Google Scholar 

  85. Dehne, H.W. and Schönbeck, F. 1978. Untersuchungen zum Einfluss der endotrophen Mykorrhiza auf Pflanzenkrankheiten II. Phenolstoffwechsel and Lignifizierung. Phytopathol ogy. 95: 210–216.

    Google Scholar 

  86. Diem, H.G., Gueye, I., Gianinazzi-Pearson, V., Rortin, J.A and Dommergues, V.R. 1981. Ecology of VA mycorrhiza in the tropics; the semi-arid zone of Senegal. Acta Decologica. 2: 53–62.

    Google Scholar 

  87. Dodd, J.C. and Jeffries, P. 1986. Early development of vesicular–arbuscular mycorrhizas in autumn–sown cereals. Soil Biology Biochemistry, 18: 149–154.

    Google Scholar 

  88. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. and Gianinazzi, S. 1989. First report of non-mycorrhizal plant mutants (Myc) Obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) Plant Science, 60: 215.

    Google Scholar 

  89. Dueck, T.A., Visser, P., Ernst, W.H.O. and Schat, H. 1986. Vesicular–arbuscular mycorrhizae decrease zinc toxicity to grasses in zinc–polluted soil. Soil Biology Biochemistry, 18: 331–333.

    Google Scholar 

  90. Dumas, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 1989. Production of new soluble proteins during VA endomycorrhiza formation. Agriculture Ecosystems Environment, 29: 111–114.

    Google Scholar 

  91. Ebbers, B.C., Anderson, R.C. and Liberta, A.E. 1987. Aspects of the mycorrhizal ecology of prairie dropseed, Sporolobus heterolepis (Poaceae). American Journal of Botany, 74: 564–573.

    Google Scholar 

  92. El-Giahmi, A.A., Nicolson, J.H. and Daft, M.J. 1976. Effects of fungal toxicants on mycorrhizal maize. Transactions British Mycological Society, 67: 172–173.

    Google Scholar 

  93. Epstein, E. 1978. Crop production in arid and semi arid region, using saline water. Department of Land, Air and water Resources, Univ. of California, Davis, CA.

    Google Scholar 

  94. Epstein, E., Norlyn, D.J., Rush, D.W., Kingsbusy, R.W., Kellry, D.S., Cunningham, G.A. and Wrona A.F. 1980. Saline culture of crops: A agenetic approach. Science, Washington, DC, 219: 397–404.

    Google Scholar 

  95. Ernst, W.H.O. 1990. Mine vegetation in Europe. In `Heavy metal tolerence in plants; Evolutionary aspects’ (ed. Shaw, A.J.), CRS Press. Boca Raton, Florida, pp. 21–73.

    Google Scholar 

  96. Estaun, V., Calvet, C. and Hayman, D.S. 1987. Influence of plant genotype on mycorrhizal infection. Response of three pea caltivars. Plant and Soil, 103: 295–298.

    Google Scholar 

  97. Faber, B.A., Zaroski, R.J., Munns, D.A. and Shackal, K. 1991. A method of measuring hyphal nutrient and water uptake in mycorrhizal plants. Canadian Journal of Botany, 69: 87–94.

    Google Scholar 

  98. Fitter, A.H. 1991. Costs and benefits of mycorrhizas; Implications for functioning under natural conditions. Experimentia, 47: 350–355.

    Google Scholar 

  99. Fitter, A.H. and Garbays, J. 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil 159: 123–132.

    Google Scholar 

  100. Fitter, A.H. and Hay, R.K.M. (eds.) 1987. Environmental Physiology of Plants, Second Edition. Academic Press, London.

    Google Scholar 

  101. Frank, A.B. 1885. Uber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baiime durch Unterisdischr Pilze. Berichte Des Deutschen Botanischem Gersellschaft, 3: 128–145.

    Google Scholar 

  102. Furlan, V. and Fortin, J.A. 1973. Formation of vesicular-arbuscular endomycorrhizas by Endogone calospora on Allium cepa under three tempratures regimes. Naturaliste Canadian, 100: 467–477.

    Google Scholar 

  103. Furlan, V. and Fortin, J.V. 1977. Effects of light intensity on the formation of vesicular -arbuscular endomycorrhizas on Alluim cepa by Gigaspora calospora. New Phytologist, 79: 335–340.

    Google Scholar 

  104. Garrett, S.D. 1970. `Pathogenic Root-infecting fungi’. Cambridge University Press.

    Google Scholar 

  105. Garriock, M.L., Peterson, R.L. and Ackerley, C.A. 1989. Early stages in colonization of Allium porrumo (Peck) roots by the VAM fungus, Glomus versiforme, New Phytologist, 112: 85.

    Google Scholar 

  106. Gemma, J.M. and Koske, R.E. 1988. Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum potential of a dune soil. Mycologia, 80: 211–216.

    Google Scholar 

  107. Gerdemann, J.W. 1968. Vesicular–arbuscular mycorrhiza and Plant growth. Annual Review of Phytopathology, 6: 397–418.

    Google Scholar 

  108. Germani, G., 011ivier, B. and Diem, H.G. 1982. Interaction of Scutellonema caranessi and Glomus mosseac on growth and N, fixation of soybean. Review of Nematology, 4: 277–280.

    Google Scholar 

  109. Gianinazzi-Pearson, V. 1984. Mycorrhizal effectiveness: How, when and where? In `Proceedings of 6th North American Conference on Mycorrhizae’ (ed. Molina, R. ). Orgean State Univ, Corvallis, pp. 150–154.

    Google Scholar 

  110. Gianinazzi-Pearson, V. and Gianinazzi. S. 1978. Enzymatic studies on the metaboslism of vesicular-arbuscular mycorrhiza II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiological Plant Pathology, 12: 45–53.

    CAS  Google Scholar 

  111. Gianinazzi-Pearson, V. and Gianinazzi, S. 1981. Role of endomycorrhizal fungi in phosphorus cycling in the ecosystem. Dans `The fungal community: its organization and role in the ecosystem’. (eds. Nicklow D.T. and Carrol, G.C.). Marcel Dekker Inc. New York, pp. 637–652.

    Google Scholar 

  112. Gianinazzi-Pearson, V. and Gianinazzi S., 1983. The physiology of vesicular–arbuscular mycorrhizal roots, Plant and Soil, 71: 197–209.

    CAS  Google Scholar 

  113. Gianinazzi-Pearson, V. and Gianinazzi, S. (eds.) 1986. The physiology of improved phosphate nutrition in mycorrhizal plants. In `Physiological and genetical aspects of mycorrhiza’. INRA, Paris, pp. 101–109.

    Google Scholar 

  114. Gianinazzi-Pearson, V. and Gianinazzi, S. 1989. Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae, Genome, 31: 336.

    Google Scholar 

  115. Gianinazzi-Pearson, V., Bonfante-Fasolo, P. and Dexheimer, J., 1986. Ultrastructural studies of surface interactions during adhesion and infection by ericoid endomycorrhizal fungi. In (ed. Lugtenberg B.). Recognition in Microbe-Plant Symbiotic and Pathogenic Interactions. NATO ASI Series, Vol. H4, Springer, Berlin, pp. 273–282.

    Google Scholar 

  116. Gianinazzi-Pearson, V., Branzanti, B. and Gianinazzi, S., 1989. In vitro enhancement of spore germination and hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids, Symbiosis, 7: 243–255.

    CAS  Google Scholar 

  117. Gianinazzi-Pearson, V., Fordeau, J.C., Asimi, S. and Gianinazzi, S. 1981. Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans. Physiology Vegetable, 19: 33–43.

    Google Scholar 

  118. Gianinazzi-Pearson, V., Trouvelot, A. and Gianinazzi, S. 1990. La ville de caen: un essai concluant. Dans `La mycorhization des végétaux: une symbiose fructuruse’. Le Lien Horticole, 46: 21–27.

    Google Scholar 

  119. Gildon, A. and Tinker, P.B. 1981. A heavy metal tolerant strain of mycorrhizal fungus. Transactions British Mycological Society, 77: 648–649.

    Google Scholar 

  120. Gogala, N. 1991. Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experimentia, 47: 331–340.

    CAS  Google Scholar 

  121. Graham, J.H. and Menge, J.A. 1982. Influence of vesicular arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology, 72: 95–98.

    Google Scholar 

  122. Graham, J.H. and Syvertsen, J.R. 1984. Influence of vesicular-arbuscular mycorrhiza on the hydraulic conductivity of root of two citrus root stocks. New Phytologist, 97: 277–284.

    Google Scholar 

  123. Graham, J.H., Leonard, R.T. and Menge, J.A. 1981. Membrane-mediated decrease in root exudation responsible for phospohorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68: 548–552.

    PubMed  CAS  Google Scholar 

  124. Graham, J.H., Linderman, R.G. and Menge, J.A. 1982. Development of external hyphae by differed isolates of mycorrhizal Glomus spp. in relation to root colonisation and growth of Troyer. Citrange. New Phytologist, 91: 183–189.

    Google Scholar 

  125. Green, N.E., Graham, S.O. and Schenck, N.C. 1976. The influences of pH on the germination of vesicular–arbuscular mycorrhizal spores. Mycologia, 68: 929–933.

    Google Scholar 

  126. Gunze, C.M.B. and Henessy, C.M.R. 1980. Effect of host applied auxin in development of endomycorrhiza in cowpeas. Transactions British Mycological Society, 74: 247–241.

    CAS  Google Scholar 

  127. Hadley, G. 1975. Fine structure of orchid mycorrhiza. In `Endomycorrhizas’ (eds. Sanders, F.E., Mosse, B. and Tinker, P.B. ), Academic Press, London and New York, pp. 335–351.

    Google Scholar 

  128. Hale, K.A. and Sanders, F.E. 1982. Effects of benomyl on vesicular arbuscular mycorrhizal infection of red clover (Trifoliums pratense, L.) and consequences for phosphorus inflow. Journal of Plant Nutrition, 5: 1355–1367.

    CAS  Google Scholar 

  129. Hall, I.R. 1975. Endomycorrhizas of Metrosideros umbellata and Weimannia racemosa. New Zealand Journal of Botany, 13: 463–472.

    Google Scholar 

  130. Hall, I.R. 1978. Vesicular-arbuscular mycorrhizas on two varieties of maize and one of sweetcorn. New Zealand Journal of Agriculture Research, 21: 517–519.

    Google Scholar 

  131. Hall, I.R., Scoth, R.S. and Johnstone, P.D. 1977. Effect of vesicular-arbuscular mycorrhizae on response of `Grasslands Huia’ and `Tamar’ white clovers to phosphorus. New Zealand Journal of Agriculture Research, 20: 349–355.

    Google Scholar 

  132. Hardie, K. 1985. The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytologist, 101: 677–684.

    Google Scholar 

  133. Hardie, K. and Leyton, L. 1981. The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytologist, 89: 599–608.

    Google Scholar 

  134. Harley, J.L. 1969. `The Biology of Mycorrhiza’ 2nd Edition Leonard Hill, London.

    Google Scholar 

  135. Hartung, W. and Slovik, S. 1991. Physiochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytologist, 119: 361–382.

    CAS  Google Scholar 

  136. Hass, H., Taylor, T.N., Rimy, W. 1994. Fungi from the lower Dovenian Rhvnia chert; Mycoparasitism. American Journal of Botany 81: 29–37.

    Google Scholar 

  137. Hayman, D.S. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. VI Effect of light and temperature. New Phytologist, 73: 71–80.

    Google Scholar 

  138. Hayman, D.S. 1975. The occurrence of mycorrhiza in crops as affected by soil fertility. In ‘Endomycorrhizas’ (eds. Sanders, F.E., Mosse, B. and Tinker, P.B. ), Academic Press, London, pp. 495–509.

    Google Scholar 

  139. Hayman, D.S. 1982. Influence of soils and fertility on activity and survival of vesiculararbuscular mycorrhizal fungi. Phytopathology, 72: 1119–1125.

    Google Scholar 

  140. Hayman, D.S. and Mosse, B. 1971. Plant growth responses to vesicular arbuscular mycorrhiza. I. Growth of Endogone-inoculated plants in phosphate deficient soils. New Phytologist, 70: 19–22.

    CAS  Google Scholar 

  141. Hayman, D.S., Barea, J.M. and Azcon, R. 1976. Vesicular arbuscular mycorrhiza in southern spain; its distribution in crops growing in soil of different fertility. Phytopathology Mediterranea 151.

    Google Scholar 

  142. Haystead, B., Malajczuk, N. and Grove, T.S. 1988. Underground transfer of nitrogen between positive plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytologist, 108: 417–423.

    Google Scholar 

  143. Heggo, A., Angle, J.S. and Chaney, R.L. 1990. Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology Biochemistry, 22: 865–869.

    CAS  Google Scholar 

  144. Hepper, C.M. 1984. In organic sulphur nutrition of the vesicular-arbuscular mycorrhizal fungus. Glomus caledonium. Soil Biology Biochemistry, 16: 669–671.

    CAS  Google Scholar 

  145. Heslop-Harrison, J. 1978. `Cellular Recognition Systems in Plants’. Edward Arnold, London.

    Google Scholar 

  146. Hetrick, B.A.D. 1984. Ecology of VA mycorrhizal fungi. In `VA mycorrhiza’ (eds. Powell, C.Ll. and Bagyaraj, D.J. ), CRC Press, Boca Raton, Florida, pp. 351–355.

    Google Scholar 

  147. Hetrick, B.A.D. and Bloom, J. 1983. Vesicular-arbuscular mycorrhiza fungi associated with nature tall grass prairie and cultivated winter wheat. Canadian Journal of Botany, 61: 2140–2146.

    Google Scholar 

  148. Hetrick, B.A.D., Wilson G.W.T. and Harnett, D.C. 1989. Relationship between dependence and compatitive ability of two tall grass prairie grasses. Canadian Journal of Botany, 67: 2608–2615.

    Google Scholar 

  149. Hetrick, B.A.D., Wilson G.W.T. and Todol, T.C. 1990. Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Canadian Journal of Botany, 68: 461–467.

    Google Scholar 

  150. Ho, I. and Trappe, J.M. 1973. Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature, London, 224: 30–31.

    Google Scholar 

  151. Hussey, R.S. and Roncadori, R.W. 1982. Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66: 9–14.

    Google Scholar 

  152. Jacquelinct-Jeanmougin, I., Gianinazzi-Pearson, V. and Gianinazzi, S. 1987. Endomycorrhizas in the Genetianaceae II. Ultrastructural aspects of symbiont relationships, in Gentiana lutea, L., Symbiosis, 3: 269.

    Google Scholar 

  153. Jalali, B.L. and Jalali, I. 1991. Mycorrhiza in plant disease control. In ` Handbook of Applied Mycology’ (eds. Arora, D.K., Rai, B., Mukerji, K.G., Kundsen, G.R.). Vol. I. Soil and Plants. Marcel and Dekker, New York, pp. 131–154.

    Google Scholar 

  154. Janos, D.P. 1975. Effects of vesicular-arbuscular mycorrhizae on lowland tropical rainforest trees. In `Endomycorrhiza’ (eds. Sanders, F.E., Mosse, B. and Tinker, P.B.) Academic Press, London, pp. 437–446.

    Google Scholar 

  155. Janos, D.P. 1980. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology, 61: 151–162.

    Google Scholar 

  156. Jarvis, M.C., Forsyth, W. and Duncan, H.J. 1988. A survey of the pectic contents of nonlignified monocot cell walls, Plant Physiology, 88: 309.

    PubMed  CAS  Google Scholar 

  157. Jensen, A. and Jakobsen, I. 1980. The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertiliser treatments. Plant and Soil, 55: 403–414.

    CAS  Google Scholar 

  158. Johnson, N.C., Copeland, P.J. Crookson, R.K. and Pfleger. F.L. 1992. Mycorrhizae: A possible explanation for yield decline associated with continuous cropping of corn and soybean. Agronomy Journal 84: 387–390.

    Google Scholar 

  159. Johnson, I.R. Melkonian, J.J., Thornley, J.M.H. and Riha, S.J. 1991. A model of water flow through plants incorporating shoot/root `message’ control of stomatal conductance. Plant Cell Environment, 14: 431–644.

    Google Scholar 

  160. Johnston, A. 1949. Vesicular arbuscular mycorrhiza in Sea Island Cotton and other tropical plants. Tropical Agriculture Trinidad, 26: 118–121.

    Google Scholar 

  161. Khan, A.G. 1974. The occurrence of mycorrhizas in halophytes, Soils. Journal of General Microbiology, 81: 7–14.

    Google Scholar 

  162. Kim, C. and Webber D.J. 1985. Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant and Soil, 83: 207–214.

    CAS  Google Scholar 

  163. Kinden, D.A. and Brown, M.R. 1975. Electron microscopy of vesicular arbuscular mycorrhizae of yellow poplar. II. Intracellular hyphae and vesicles. Canadian Journal of Microbiology. 21: 1768–1780.

    PubMed  CAS  Google Scholar 

  164. Killham, K. and Fireston, M.K. 1983. Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant and Soil, 72: 39–48.

    CAS  Google Scholar 

  165. Koch, K.E. and Johnson, C.R. 1984. Photosynthate partitioning in split–root citrus seedlings with mycorrhizal and non mycorrhizal root systems. Plant Physiology, 75: 26–30.

    PubMed  CAS  Google Scholar 

  166. Koide, R. 1985. The nature of growth depressions in sunflower caused by vesicular–arbuscular mycorrhizal infection. New Phytologist, 99: 449–462.

    Google Scholar 

  167. Koide, R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 117: 365–386.

    CAS  Google Scholar 

  168. Koomen, I., McGrath, S.P. and Giller, K.E. 1990. Mycorrhizal infection of clover is delayed in soils contaminated by heavy metals from past sewage sludge applications. Soil Biology Biochemistry, 22: 871–873.

    CAS  Google Scholar 

  169. Kothari, S.K., Marschner, M. and Romheld, V. 1990. Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytologist, 116: 637–645.

    CAS  Google Scholar 

  170. Krishna, K.R. 1981. Studies on the mechanism of improved plant growth due to vesicular arbuscular mycorrhiza Ph. D thesis. University of Agricultural sciences Bangalore, India pp. 139.

    Google Scholar 

  171. Krishna, K.R. and Bagyaraj, D.J. 1983. Changes in the free amino–nitrogen and protein fractions of groundnut caused by inoculation with VA mycorrhiza, Annals of Botany, 51: 399–401.

    CAS  Google Scholar 

  172. Krishna, K.R., Shetty, K.G., Dart, P.J. and Andrews, D.J. 1985. Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant and Soil, 86: 113–125.

    Google Scholar 

  173. Krishna, K.R., Suresh, H.M., Syamsunder, J. and Bagyaraj, D.J. 1981. Changes in the leaves of finger millet due to V.A mycorrhizal infection. New Phytologist, 87: 717–22.

    CAS  Google Scholar 

  174. Kruckelman, H.W. 1975. Effect of fertilizer, soil, soil tillage and plant species on frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In `Endomycorrhizas’ (eds. Sanders, F.E., Mosse, B, and Tinker, P.B. ), Academic Press, London, pp. 511–525.

    Google Scholar 

  175. Kucey, R.M.N. and Paul, E.A. 1982. Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated fababeans (Vicia faba L.). Soil Boilogy Biochemistry, 14: 40712.

    Google Scholar 

  176. Lambert, D.H., Baker, D.E. and Cole, H. Jr. 1979. The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Science Society of American Journal. 43: 967–980.

    Google Scholar 

  177. Lambert, D.H., Cole Jr. H. and Baker, D.E. 1980. Variation in the responses of Alfalfa clone and cultivars to mycorrhizae and phosphorus. Crop Science, 20: 615–618.

    CAS  Google Scholar 

  178. Lindermann, R.G. 1988. Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effect. Phytopathology, 78: 366–371.

    Google Scholar 

  179. Ling-lee, M., Chilvers, G.A. and Ashford, A.E. 1975. Poly -phosphate granules in three different kinds of tree mycorrhiza. New Phytologist, 75: 551–54.

    Google Scholar 

  180. Losel, D.M. and Cooper, K.M. 1979. Incorporation of 14C–labelled substrates by uninfected roots of onion. New Phytologist, 83: 415–426.

    Google Scholar 

  181. Manjunath, A. and Habte. M. 1991. Root morphological characteristics of host species having distinct mycorrhizal dependency. Canadian Journal of Botany, 69: 671–676.

    Google Scholar 

  182. Marx, C., Dexheimer, J., Gianinazzi-Pearson, V. and Gianinazzi, S. 1982. Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhiza IV. Ultra cytoenzymological evidence (ATP ase) for active transfer processes in the host–arbuscular interface. New Phytologist, 90: 37–43.

    CAS  Google Scholar 

  183. Matile. P. and Wienken, A. 1976. Interaction between cytoplasm and vacuole. In ‘Encyclopaedia of plant Physiology’ (eds. Stocking, C.R., Heber, V. ). New Series, Vol. III. Transport in plants, III edition Heber, Springer–Verlag, Berlin; pp. 255–287.

    Google Scholar 

  184. Mejstrick, J. 1965. Study of the development of endotrophic mycorrhiza in assocition with Cladietum marisci. In `Plant microbe relationship’ pp. 283–290. (eds. Macura, J. and Vancura, V. ), Czechoslovak Academy of Science, Prague.

    Google Scholar 

  185. Menge, J.A. 1983. Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture. Canadian Journal of Botany, 61: 1015–1204.

    Google Scholar 

  186. Menge, J.A., Lembright, H. and Johnson, E.L.V. 1977. Utilization of mycorrhizal fungi in citrus nurseries. Proceedings of International Society of Citriculture, 1: 129–132.

    Google Scholar 

  187. Menge, J.A., Munnecke, D.E., Johnson, E.L.V. and Camas, D.W. 1978. Dosage response of the vesicular–arbuscular mycorrhizal fungi Glomus fasciculatus and G. constrictus to methyl bromide. Phytopathology, 68: 1368–1372.

    CAS  Google Scholar 

  188. Menge, J.A., Nemec, S., Davis, R.M. and Minassian, V. 1977. Mycorrhizal fungi associated with citrus and their possible interactions with pathogens. Proceedings of International Society of Citriculture, 3: 872–876.

    Google Scholar 

  189. Mercy, M.A., Shivashankar, G. and Bagyaraj, D.J. 1990. Mycorrhizal colonization in cowpea is host dependent and heritable. Plant and Soil, 121: 292–294.

    Google Scholar 

  190. Mittal, N., Mamta Sharma, Geeta Saxena and K.G. Mukerji 1991. Effect of VA Mycorrhiza on Gall formation in tomato roots. Plant Cell Incompatibility Newsletter (New York), 23: 39–43.

    Google Scholar 

  191. Morton, J.B. 1993. Problems and solutions for integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycologia, 2: 97109.

    Google Scholar 

  192. Morton, J.B. and Benny, G.L. 1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporneae and two new families, Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae. Mycotaxon, 37: 471–491.

    Google Scholar 

  193. Morton, J.B. and Bentivenga, S.P. 1994. Levels of diversity in endomycorrhizal fungi (Glornale, Zygomycetes) and their, role in defining taxonomic and non-taxonomic groups. Plant and Soil, 159: 47–60.

    Google Scholar 

  194. Morton, J., Frank, M. and Cloud, G. 1992. The nature of fungal species in Glomales (Zygomycetes). In Mycorrhiza in Ecosystems. (eds. Read, D.J.• Lewis, D.H., Filter, A.H. and Alexander, I.J.). CAB International, Oxon, U.K. pp. 65–73.

    Google Scholar 

  195. Mosse, B. 1972. Influence of soil type and Endogone strains on the growth of mycorrhizal plants in phosphate deficient soil. Review Ecology and Biology of Soil., 9: 529–537.

    CAS  Google Scholar 

  196. Mosse, B. 1973. The role of mycorrhiza in phosphorus solubilization. Global Impacts of Applied Microbialogy. 4th Intern. Conf. Sao Paulo. Brazil, pp. 543–561.

    Google Scholar 

  197. Mosse, B. 1977. Plant growth responses to vesicular–arbuscular mycorrhiza. X. Response of stylosanthis and maize to inoculation in unsterile soils. New Phytologist, 78: 277–288.

    Google Scholar 

  198. Mosse, B. 1991. Future VA mycorrhiza research and prospects for practical application. In `Mycorrhiza News’ 3: 1–4.

    Google Scholar 

  199. Mosse, B., Hayman. D.S. and Arnold, D.J. 1973. Plant growth responses to vesicular–arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32p. New Phytologist, 72: 809–15.

    CAS  Google Scholar 

  200. Mosse, B., Powell, C,L1. and Hayman, D.S. 1976. Plant growth responses to vesiculararbuscular mycorrhiza IX. Interactions between VA mycorrhiza rock phosphate and symbiotic nitrogen fixation. New Phytologist, 76: 331–342.

    CAS  Google Scholar 

  201. Mukerji, K.G. 1996. Taxonomy of Endo-mycorrhizal fungi. In `Advances in Botany’ (eds. Mukerji, K.G., Mathur, B., Chamola, B.P. and Chitralekha, P) Ashish Publishing House, Delhi pp. 211–219.

    Google Scholar 

  202. Mukerji, K.G. and Kapoor, A. 1990. Taxonomy of VAM fungi with special reference to Indian taxa. In `Perspectives in mycological research’ I1. (eds G.P. Agarwal ). Today and Tommorow Printers and Pub., New Delhi, pp. 7–16.

    Google Scholar 

  203. Munns, D.N. and Mosse, B. 1980. Mineral nutrition of legume crops. In `Advances in Legume Science’ (eds Summerfield, R.J. and Bunting, A.H. ). University of Reading Press, Reading, pp. 115–125.

    Google Scholar 

  204. Muramaki-Mizakami, Y., Yamamoto, Y. and Yamaki, S. 1991. Analyses of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Science Plant Nutrition Tokyo, 37: 291–298.

    Google Scholar 

  205. Nelsen, C.E. 1987. The water relations of vesicular–arbuscular mycorrhizal systems. In `Ecophysiology of VA mycorrhizal plants’ (ed. G.K. Safir ). CRC Press, Boca Raton, Florida, USA., pp. 71–92.

    Google Scholar 

  206. Nemec, S. and O’Bannon, J.H. 1979. Responses of Citrus aurantium to Glomus etunicatus and G. mosseae after soil treatment with selected fumigants. Plant and Soil, 53: 351–359.

    CAS  Google Scholar 

  207. Nemec, S. and Meredith, F.I. 1981. Amino–acid content of leaves in mycorrhizal and non–mycorrhizal citrus root stocks. Annals of Botany, 47: 351–358.

    CAS  Google Scholar 

  208. Newman, E.I. and Andrews, R.E. 1973. Uptake of phosphorus and potassium in relation to root growth and root density. Plant and Soil, 38: 49–69.

    CAS  Google Scholar 

  209. Nicolson, T.H. 1975. Evolution of vesicular–arbuscular mycorrhizae. In `Endomycorrhizas’ (eds. Sander, F.E., Mosse, E. and Tinker, P.B. ). Academic Press, New York, pp. 25–34.

    Google Scholar 

  210. Nyabyenda, R. 1977. Einfluss der Bodentemperature und organischer Stoffe im Boden auf die Wirkung der Vesikular arbuskularon Mykorrhiza. Dissertation, Gottingen.

    Google Scholar 

  211. Nye, P. and Tinker, P.B. 1977. Solute Movement in the Soil - Root System. Oxford; Black Well Scientific, pp. 342.

    Google Scholar 

  212. O’Bannon, J.H., Evans, D.W and Peaden, R.N. 1980. Alfalfa varietal response to seven isolates of vesicular–arbuscular mycorrhizal fungi. Canadian Journal of Plant Science, 60: 859–864.

    Google Scholar 

  213. Ojala, J.C., Jarell, W.N., Menge, J.A. and Johnson, E.L.V. 1983. Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal, 75: 255–259.

    CAS  Google Scholar 

  214. Owusu-Bennoah, E. and Wild, A. 1979. Autoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular–arbuscular mycorrhiza. New Phytologist, 82: 133–40.

    CAS  Google Scholar 

  215. Pacovsky, R.S. 1986. Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant and Soil, 95: 379–388.

    CAS  Google Scholar 

  216. Pairunan, A.K., Robson, A.D. and Abbott, L.K. 1980. The effectiveness of vesicular–arbuscular mycorrhizas in increasing growth and phophorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytologist, 84: 327–38

    CAS  Google Scholar 

  217. Pang, P.C. and Paul, E.A. 1980. Effects of vesicular–arbuscular mycorrhiza on ‘4C and 5N distribution in nodulated fababeans. Canadian Journal of Soil Science, 60: 241–250.

    CAS  Google Scholar 

  218. Paulitz, T.C. and Linderman, R.G. 1991a. Mycorrhizal interactions with soil organisms. In `Handbook of applied mycology’ (eds Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.R. ). Vol. I Soil and Plants. Marcel Dekker, New York, pp. 77–129.

    Google Scholar 

  219. Paulitz, T.C. and Linderman, R.G. 1991b. Lack of antagonism between the biocontrol agent, Gliocladium virens and vesicular-arbuscular mycorrhizal fungi. New Phytologist, 117: 303–308.

    Google Scholar 

  220. Peters, N.K. and Verma, D.P.S. 1990. Phenolic compounds as regulators of gene expression in plant - microbe interactions. Molecular Plant-Microbe Interactions, 3: 48.

    Google Scholar 

  221. Pfeiffer, C.M. and Bloss, H.E. 1988. Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytologist, 108: 315–321.

    Google Scholar 

  222. Pirozynski, K.A. and Dalpe Y. 1989. Geological history of the Glomales with particular reference to mycorrhizal symbiosis. Symbiosis, 7: 1–36.

    Google Scholar 

  223. Pirozynski, K.A. and Malloch, D.W. 1975. The origin of land plants; a matter of mycotropism. Biosystems, 6: 153–164.

    PubMed  CAS  Google Scholar 

  224. Powell, C.L. 1975. Plant growth responses to vesicular–arbuscular mycorrhizal VIII. Uptake of P by onion and clover infected with different Endogone spore types in 32P–labelled soil. New Phytologist, 75: 563–50.

    Google Scholar 

  225. Powell, C.LI. and Sithamparanathum, J. 1977. Mycorrhizas in hill country soils N. Infection rate in grass and legume species by indigenous mycorrhizal fungi under field conditions, New Zealand Journal of Agricultural Research, 20: 489–494.

    Google Scholar 

  226. Rani, R. and Mukerji, K.G. 1988. Indian Vesicular-arbuscular mycorrhizal fungi. In `Mycorrhiza Round Table’ (eds Verma, A.K., Oka, A.K. Mukerji, K.G., Tilak, K.V.B.R. and Raj, J.). International Developmental Research Council of Canada, New Delhi. Manuscript Report 201e: 166–180.

    Google Scholar 

  227. Ratnayake, R.T., Leonard, R.T. and Menge, J.A. 1978. Root exudation in relation to supply of phorphorus and its possible relevance to mycorrhizal infection. New Phytologist, 81: 543–52.

    CAS  Google Scholar 

  228. Redhead, J.F. 1977. Endotrophic mycorrhizas in Nigeria; species of the Endogonaceae and their distribution. Transactions British Myclogical Society, 69: 275–280.

    Google Scholar 

  229. Remy, W., Taylor, T.N., Hass, H. and Kerp, H. 1991. Four hundred million-year old vesicular-arbuscular mycorrhizae. Proceeding of National Academy of Science, USA, 91: 11841–11843.

    Google Scholar 

  230. Rhodes, L.H. and Gerdemann, J.W. 1978. Translocation of calcium and phosphate by external hyphae of vesicular-arbuscular mycorrhizae. Soil Science, 126: 125–126.

    CAS  Google Scholar 

  231. Rives, C.S., Baswa, M.I. and Liberta, A.E. 1980. Effects of topsoil storage during surface mining on the viability of VA mycorrhiza. Soil Science, 129, 253–257.

    Google Scholar 

  232. Roncadori, R.W. and Hussey, R.S. 1977. Interaction of the endomycorrhizal fungus Gigaspora margarita and root–knot nematode on cotton. Phytopathology.. 67: 1507–1511.

    Google Scholar 

  233. Rose, S.L. 1980. Mycorrhizal association of some–actinomycete nodulated nitrogen fixing plants. Canadian Journal of Botany, 58: 1449–1454.

    Google Scholar 

  234. Rose, S.L. and Trappe, J.M. 1980. Three new endomycorrhizal Glomus spp. Associated with actinorrhizal shrubs. Mycotaxon., 10: 413–420.

    Google Scholar 

  235. Rose, S.L. and Youngberg, G.T. 1981. Tripartite associations in snowbrush (Ceanothus velutinus); effect of vesicular–arbuscular mycorrhizae on growth nodulation and nitrogen fixation. Canadian Journal of Botany, 59: 34–39.

    CAS  Google Scholar 

  236. Rosendahl, C.N. and Rosendahl S. 1991. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp) on the response of cucumbers (Cucumis sativus L.,) to salt stress. Environmental and Experimental Botany, 31: 313–318.

    Google Scholar 

  237. Rozema, J., Asp., W., Van Diggeln, J., M-Van Esbrock, Brokeman, R. and Punte, H. 1986. Occurrence and ecological significance of vesicular–arbuscular mycorrhiza in the salt marsh environment. Acta Botanica Neerlandica, 35: 457–467.

    Google Scholar 

  238. Rusell, E.W. 1973. Soil Conditions and plant Growth, Tenth Edition, Longman, London and New York.

    Google Scholar 

  239. Same, B.I., Robson, A.D. and Abbott, L.K. 1983. phosphorus. Soluble carbohydrates and endomycorrhizal infection. Soil Boilogy Biochemistry, 15: 593–597.

    Google Scholar 

  240. Sanders, F.E. 1975. The effect of foliar-applied phosphate on the mycorrhizal infections of onion roots. In `Endomycorrhizas’ (eds. Sanders, E.F., Moss. B. and Tinker, P.B.) Academic Press, London, pp. 261–276.

    Google Scholar 

  241. Sanders, F.E. and Tinker, P.B. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature, London, 232: 278–279.

    Google Scholar 

  242. Sanders, I.R. 1990. Seasonal patterns of vesicular-arbuscular mycorrhizal occurrence in grasslands. Symbiosis, 9: 315–320.

    Google Scholar 

  243. Scannerini, S. and Bonfanto-Fasolo, P. 1983. Comparative ultrastructural analysis of mycorrhizal associations. Canadian Journal of Botany, 61: 917–943.

    Google Scholar 

  244. Schenck, N.C. 1981. Can mycorrhiza control root disease? Plant Disease Report, 65: 230.

    Google Scholar 

  245. Schenck, N.C. and Hinson. K. 1973. Response of nodulating and non-nodulating soybeans to a species of Endogone mycorrhiza. Agronomy Journal. 65: 849–850.

    Google Scholar 

  246. Schenck, N.C. and Kellam, M.K. 1978. The influence of vesicular-arbuscular mycorrhizae on disease development. Agriculture Experimental Station Technical Bulletin, Florida, 798.

    Google Scholar 

  247. Schenck, N.C. and Schroder, V.N. 1974. Temperature response of Endogone mycorrhiza on soybean roots. Mycologia., 66: 600–605.

    PubMed  CAS  Google Scholar 

  248. Schenck, N.C., Graham, S.O. and Green, N.E. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia, 67: 1189–1192.

    PubMed  CAS  Google Scholar 

  249. Schönbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In ‘Soil-borne plant pathogens’ (eds. Schippers, B. and Gams, W.). Academic Press London, pp. 271–280.

    Google Scholar 

  250. Schönbeck, F. and Dehne. H.W. 1979. The influence of endotropic mycorrhiza on plant parts, Olpidium brassicae, TMV. Journal of Plant Disease Protection, 86: 103–112.

    Google Scholar 

  251. Schüepp, H.B., Dehn, and Sticher, H. 1987. Interaklionen zwischen VA-mycorrhizen and Schermetal] belastungen. Angewante Botanik, 61: 85–96.

    Google Scholar 

  252. Schwab, S.M., Johnson E.L.V. and Menge, J.A. 1982. Influence of simazine on formation of vesicular-arbuscular mycorrhizae in Chenopodubn quinona wild. Plant and Soil, 64: 283–287.

    CAS  Google Scholar 

  253. Sen, R., 1992. Isoenzyme analysis of mycorrhizal fungi and their mycorrhiza in identification, population biology and completion studies. University Hebinki, Finland.

    Google Scholar 

  254. Sharma, M. and Mukerji, K.G. 1992. Mycorrhiza–tool for biological control of plant diseases. In `Recent developments in biocontrol of plant diseases’ (eds. Mukerji K.G., Tewari J.P., Arora D.K., Saxena G. ). Aditya Books, New Delhi, India, pp. 52–80.

    Google Scholar 

  255. Sheikh, N.A., Saif, S.E. and Khan, A.G. 1975. Ecology of Endogone II. Relationship of Endogone spore population with chemical soil factors. Islamabad Journal of Science, 2: 6–9.

    CAS  Google Scholar 

  256. Skipper H.D. and Smith. G.W. 1979. Influence of soil pH on the soybean endomycorrhiza symbiosis. Plant and Soil, 53: 559–563.

    Google Scholar 

  257. Smith, D.C. and Douglas, A.E., 1987. The biology of symbiosis. Edward Arnold Publishers Ltd., London, U.K.

    Google Scholar 

  258. Smith, F.A. and Smith, S.E. 1981. Mycorrhizal infection and growth of Trifolium subterraneum use of sterilized soil as a control treatment. New Phytologist, 88: 299–309.

    CAS  Google Scholar 

  259. Smith, S.E. 1980. Mycorrhiza of autotrophic higher plants. Biological Reviews, 55: 475–510.

    CAS  Google Scholar 

  260. Smith, S.E. 1982. Inflow of phosphate into mycorrhizal and non-mycorrhizal Trifolium subterraneum at different levels of soil phosphate. New Phytologist, 90: 293–303.

    CAS  Google Scholar 

  261. Smith, S.E. and Be, G.D. 1979. Soil temperature, mycorrhizal infection and nodulation of Medicago truncatula and Trifolium subterraneum. Soil Biology Biochemistry, 11: 469–473.

    Google Scholar 

  262. Smith, S.E. and Daft, M.J. 1977. Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa. Australian Journal of Plant Physiology, 9: 403–413.

    Google Scholar 

  263. Smith, S.E. and Gianinazzi-Pearson, V. 1988. Physiological interaction between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review Plant Physiology and Plant Molecular Biology, 39: 221–244.

    CAS  Google Scholar 

  264. Smith, S.E., Nicholas, J.D. and Smith, F.A. 1974. Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum L., Australian Journal of Plant Physiology. 6: 305–316.

    Google Scholar 

  265. Smith, S.E., St John, B.J., Smith, F.A. and Bromley, J.L. 1986. Effect of mycorrhizal infection on plant growth nitrogen and phosphorus nutrition of glass house–grown Allium cepa L. New Phytologist, 103: 359–373.

    Google Scholar 

  266. Smith, S.E., St John, B.J., Smith, F.A. and Nicholas, D.J.D. 1985. Activity of glutamine synthetase and glutamate dehydrogengense in Trifolium subterraneum L. and Allium cepa L. effects of mycorrhizal infection and phosphate nutrition. New Phytologist, 99: 211–27.

    CAS  Google Scholar 

  267. Smith, S.E. and Walker, N.A. 1981. A quantitative study of mycorrhizal infection in Trifolium: Separate determination of the rates of infection and of mycelial growth. New Phytologist, 89: 225–240.

    Google Scholar 

  268. Snellgrove, R.C., Splittstrosser, W.E., Stribley, D.P. and Tinker, P.B. 1982. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesiculararbuscular mycorrhizas. New Phytologist, 92: 75–87.

    Google Scholar 

  269. Sondergaard, M. and Laegaard, S. 1977. Vesicular–arbuscular mycorrhiza in some aquatic vascular plants. Nature, London, 168: 232–233.

    Google Scholar 

  270. Sparling, G.P. and Tinker, P.B. 1978. Mycorrhizal infection Pennine Grassland. I. Levels of infection in the field. Jounral of Applied Ecology, 15: 943–950.

    Google Scholar 

  271. Srivastava, D. and Mukerji, K.G. 1995. Field response of mycorrhizal and nonmycorrhizal Medicago sativa var. local in the F1 generation. Mycorrhiza, 5: 219–221.

    Google Scholar 

  272. St. John, T.V. 1980. Root size root hairs and mycorrhizal infection a reexamination of Baylis’s hypothesis with tropical trees. New Phytologist, 84: 483–487.

    Google Scholar 

  273. Stubblefield, S.P., Taylor, T.N. and Trappe, J.M. 1987. Fossil mycorrhizae a case for symbiosis. Science 237: 59–60.

    PubMed  CAS  Google Scholar 

  274. Stuessy, T.F. 1992. The systematics of arbuscular mycorrhizal fungi in relation to current approaches to biological classification. Mycorrhiza, 1: 667–677.

    Google Scholar 

  275. Stribley, D.P., Tinker, P.B. and Rayner, J.H. 1980. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytologist, 86: 261–266.

    CAS  Google Scholar 

  276. Strullu, D.G. and Gounet, J.P. 1974. Ultrastructure et evolution due champignon symbiotique des racines de Dactvlorchis maculata (L.) Verm. Journal of Microscopy, 20: 285–294.

    Google Scholar 

  277. Swaby, R.J. 1975. Biosuper-biological superphosphate. In `Sulfur in Australian agriculture’ (ed. McLachlen, K.D. ), CSIRO, Glen Osmond, pp. 213–222.

    Google Scholar 

  278. Swaminathan, K. and Verma. B.C. 1979. Responses of three crop species to vesiculararbuscular mycorrhizal infection on zinc-deficient Indian Soils. New Phytologist, 82: 481–487.

    Google Scholar 

  279. Sward, R.J. 1981. The structure of the spores of Gigaspora margarita II. Changes accompanying germination. New Phytologist, 88: 661–666.

    Google Scholar 

  280. Tester, M., Smith, F.A. and Smith, S.E. 1985. Phosphate inflow into Trifolium subterraneum L., effects of photon irradiance and mycorrhizal infection. Soil Boilogy Biochemistry, 17: 807–810.

    Google Scholar 

  281. Tester, M., Smith, S.E., Smith, F.A. and Walker, N.A. 1986. Effects of photon irradiance on the growth of shoots and roots in the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytologist, 103: 375–390.

    Google Scholar 

  282. Tinker, P.B. 1975. Effects of vesicular-arbuscular mycorrhizas on higher plants. Symposium on Social and Experimental Biology, 29: 325–349.

    CAS  Google Scholar 

  283. Tinker, P.B. 1978. Effect of vesicular-arbuscular mycorrhizas on plant nutrition and plant growth. Physiology Vegetable, 16: 743–775.

    CAS  Google Scholar 

  284. Tinker. P.B. 1984. The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant and Soil, 76: 77–91.

    CAS  Google Scholar 

  285. Tisdall, J.M. 1994. Possible role of soil microorganisms in aggregation in soils. Plant and Soil 159: 115–121.

    Google Scholar 

  286. Tisdall, J.M. and Oades, J.M. 1979. Stabilisation of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 17: 429–441.

    Google Scholar 

  287. Toth, R. and Miller, R.M. 1984. Dyamics of arbuscular development and degeneration in a Zea mays mycorrhiza. Australian Journal of Botany, 71: 449–460.

    Google Scholar 

  288. Trappe, J.M. 1981. Mycorrhiza and productivity of arid and semiarid rangelands. In `Advances in food producing systems for arid and semiarid Lands’ (eds. J.T. Manassah and E.J. Briskey ), Academic Press, New York, pp. 503–599.

    Google Scholar 

  289. Tsai, S.M. and Phillips, D.A. 1990. Alfalfa flavonoids affect vesicular-arbuscular mycorrhizae development in vitro. Proceeding 8th North American Conference on Mycorrhizae, Jackson, Wyoming, U.S.A.

    Google Scholar 

  290. Vosatka, M., Gryndler, M., Prikryl, Z. 1992. Effect of rhizosphere bacterium Pseudomonas putiola arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry. Agronomie, 12: 859–863.

    Google Scholar 

  291. Walker, C. and Trappe, J.M. 1992. Names and epithets in Glomales and Endogonales. Mycological Research, 97: 339–344.

    Google Scholar 

  292. Wallace, L.L. 1981. Growth morphology and gas exchange of mycorrhizal and nonmycorrhizal Panicum coloratum L., a C4 grass species under different clipping and fertilisation regimes. Oecologia., 49: 272–278.

    Google Scholar 

  293. Warner, A. and Mosse, B. 1980. Independent spread of vesiular-arbuscular mycorrhizal fungi in soil. Transactions of British Mycological Society, 74: 407–410.

    Google Scholar 

  294. Weete, J.D. 1980. Lipid Biochemistry of fungi. New York. Plenum. pp. 388

    Google Scholar 

  295. White, J.A. and Brown, M.R. 1979. Ultrastructure and Xray analysis of phosphorus granules in a vesicular-arbuscular mycorrhizal fungus. Canadian Journal of Botany, 57: 2812–2818.

    CAS  Google Scholar 

  296. Williams, C.N. 1975. The agronomy of the major tropical crops. Oxford University Press, London.

    Google Scholar 

  297. Witty, J.F., Minchin, F.R. and Sheehy, J.E. 1983. Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen, Journal of Experimental Botany., 34: 951–963.

    CAS  Google Scholar 

  298. Yocums, D.H., Larsen, H.J. and Boosatis, M.G. 1985. The effects of tillage treatments and a fallow season on VA mycorrhizae of winter wheat. p. 297. In (ed. R. Molina ) Proceedings of 6th North American Conference on Mycorrhizae, Bend, OR. 25–29 June 1984. Forest Research Laboratory Corvallis, Oregon, USA.

    Google Scholar 

  299. Young, C.C., Juang, T.C. and Guo, H.Y. 1986. The effect of inoculation with vesiculararbuscular mycorrhizal fungi on Soybean yield and mineral phosphours utilisation in subtropical-tropical soil. Plant and Soil, 95: 245–253.

    CAS  Google Scholar 

  300. Zhang, J. and Davies, W.J. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status on futile soil. Plant Cell Environment, 12: 73–81.

    CAS  Google Scholar 

  301. Zhang, J. and Davies, W.J. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant cell Environment, 13: 277–285.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Srivastava, D., Kapoor, R., Srivastava, S.K., Mukerji, K.G. (1996). Vesicular arbuscular mycorrhiza — an overview. In: Mukerji, K.G. (eds) Concepts in Mycorrhizal Research. Handbook of Vegetation Science, vol 19/2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1124-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1124-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4660-4

  • Online ISBN: 978-94-017-1124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics