Skip to main content

An Efficient Implementation of the Velocity Transformation Method for Real-Time Dynamics with Illustrative Examples

  • Chapter

Abstract

This paper presents an efficient algorithm based on velocity transformations for real-time dynamic simulation of multibody systems. Closed-loop systems are turned into open-loop systems by cutting joints. The closure conditions of the cut joints are imposed by explicit constraint equations. An algorithm for real-time simulation is presented that is well suited for parallel processing. The most computationally demanding tasks are matrix and vector products that may be computed in parallel for each body. Four examples are presented that illustrate the performance of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, W. W., 1979, “Recursive Solution to the Equations of Motion of an N-Link Manipulator”, 5th World Congress on Theory of Machines and Mechanisms, vol. 2, pp. 1343–1346.

    Google Scholar 

  • Avello, A., Jiménez, J, M., Bayo, E. and Garcia de Jalón, J., 1993, “A Simple and Highly Parallelizable Method for Real-Time Dynamic Simulation Based on Velocity Transformations”, Computer Methods for Applied Mechanics and Engineering, Vol. 107, pp. 313–339, (1993).

    Article  MATH  Google Scholar 

  • Bae, D. S. and Haug, E. J., 1987, “A Recursive Formulation for Constrained Mechanical System Dynamics. Part I: Open Loop Systems”, Mechanical Structures and Machines, vol. 15 (3), pp. 359–382.

    Article  Google Scholar 

  • Bae, D. S., Kuhl, J. G. and Haug, E. J., 1988, “A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation”, Mechanical Structures and Machines, vol. 16 (2), pp. 249–269.

    Article  Google Scholar 

  • Bayo, E., Garcia de Jalón, J. and Sema, M.A., 1988, “A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems”, Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Bohn, P. F. and Keenan, R. J., “Hybrid Computer Vehicle Handling Program”, APL, The Johns Hopkins University, Report No. DOT-HS-801 290.

    Google Scholar 

  • Chang J. L. and Kim, S. S., 1989, “A Low-Cost Real-Time Man-in-the-Loop Simulation for Multibody Systems”, Advances in Design Automation, vol. 3, pp. 95–99.

    Google Scholar 

  • Featherstone, R., 1987, Robot Dynamics Algorithms,Kluwer Academic Publishers.

    Google Scholar 

  • Fijany, A. and Bejczy, A. K., 1990, “An Efficient Method for Computation of Manipulator Inertia Matrix”, Journal of Robotic Systems, vol 7 (1), pp. 57–80.

    Article  MATH  Google Scholar 

  • Garcia de Ja16n, J., Unda, J. and Avello, A., 1986, “Natural Coordinates for the Computer Analysis of Multibody Systems”, Computer in Applied Mechanics and Engineering, Vol. 56, pp. 309–327.

    Article  MATH  Google Scholar 

  • Garcia de Jal6n, J., Unda, J., Avello, A. and Jiménez, J. M., 1987, “Dynamic Analysis of Three-Dimensional Mechanisms in Natural Coordinates”, ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 109, pp. 460–465.

    Article  Google Scholar 

  • Garcia de Jalón, J., Jiménez, J. M., Martin, F. and Cuadrado, J., 1989, “Real-time simulation of complex 3-D multibody systems with realistic graphics”, in Real-Time Integration Methods for Mechanical System Simulation, Ed. Haug, E. J. and Deyo, R. D., NATO ASI Series, Springer-Verlag.

    Google Scholar 

  • Huston, R. L., 1990, Multibody Dynamics,Butterworth-Heinemann.

    Google Scholar 

  • Jain, A, 1991, “Unified Formulation of Dynamics for Serial Rigid Multibody Systems”, Journal of Guidance, Control and Dynamics, vol. 14 (3), pp. 531–542.

    Article  MATH  Google Scholar 

  • Jerkovsky, W., 1978, “The Structure of Multibody Dynamics Equations”, Journal of Guidance and Control, vol. 1 (3), pp. 173–182.

    Article  MATH  Google Scholar 

  • Kane, T. R. and Levinson, D. A., 1985, Dynamics: Theory and Applications,McGraw-Hill.

    Google Scholar 

  • Kim, S. S. and Vanderploeg, M. J., 1986, “A General and Efficient Method for Dynamic

    Google Scholar 

  • Analysis of Multibody Systems Using Velocity Transformations“, Journal of Mechanisms, Transmissions and Automation in Design,vol 108, pp. 176–182.

    Google Scholar 

  • Kortüm, W. and Sharp, R.S., 1993, Multibody Computer Codes in Vehicle System Dynamics, Swets Zeitlinger B.V., Amsterdam/Lisse.

    Google Scholar 

  • Rosenthal, D., 1987, “Order N Formulation for Equations of Motion of Multibody Systems”, SDIO/NASA Workshop on Multibody Simulations, JPL Pub. D-5190, Jet Propulsion Laboratory, Pasadena, CA, pp. 1122–1150.

    Google Scholar 

  • Schiehlen, W. O., 1990, Multibody Systems Handbook,Springer-Verlag.

    Google Scholar 

  • Shampine, L. F. and Gordon, 1975, Computer Solution of Ordinary Differential Equations: The Initial Value Problem,Freeman.

    Google Scholar 

  • Unda, J., Garcia de Jalón, J., Losantos, F. and Enparantza, R., “A Comparative Study on Some Different Formulations for the Dynamic Analysis of Constrained Mechanical Systems”, Journal of Mechanism Transmissions and Automation in Design,Vol. 109 (4), pp. 466–474.

    Google Scholar 

  • Walker, M. W. and Orin, 1982, “Efficient Dynamic Computer Simulation of Robotic Mechanisms”, ASME Journal of Dynamic Systems and Measurement Control, vol. 104, pp. 205–211.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiménez, J.M., Avello, A.N., De Jalón, J.G., Avello, A.L. (1995). An Efficient Implementation of the Velocity Transformation Method for Real-Time Dynamics with Illustrative Examples. In: Pereira, M.F.O.S., Ambrósio, J.A.C. (eds) Computational Dynamics in Multibody Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1110-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1110-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4508-9

  • Online ISBN: 978-94-017-1110-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics