Skip to main content

Marcel Riesz’s Work on Clifford Algebras

  • Chapter
Book cover Clifford Numbers and Spinors

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 54))

Abstract

This article reviews Marcel Riesz’s lecture notes on Clifford Numbers and Spinors, 1958, and evaluates its effect on present research on Clifford algebras.

The article begins with a critical survey of the history of Clifford algebras. Inaccuracies in citations are pointed out and mistaken priorities are rectified. Misconceptions about Clifford algebras are examined and flaws are corrected. The paper focuses on controversial issues that have been debated over the past few years, and offers definitive resolutions. Concrete counter-examples are given to misplaced claims.

Particular attention is directed to the existence of a canonical linear isomorphism between the exterior algebra and the Clifford algebra. Chevalley constructed the Clifford algebra Cl(Q) of a quadratic form Q as a subalgebra of the endomorphism algebra End(⋀V) of the exterior algebra ⋀V. This construction depends on an arbitrary, not necessarily symmetric, bilinear form B such that B(x, x) = Q(x). The choice of B fixes the contraction uv in ⋀V and permits the introduction of a Clifford product xu = x⌋u + x⋀u of x ∈ V and u ∈ ⋀ V. This gives rise to the Clifford algebra of the symmetric bilinear form 1/2(B(x,y)+B(y,x)) when the characteristic ≠ 2.

Marcel Riesz went backwards with his fundamental formulas

$$x\left. {\underline {\, {} \,}}\! \right| \;u\frac{1}{2}(xu - \hat ux)and\;x\Lambda u = \frac{1}{2}(xu + \hat ux)$$

and re-introduced the contraction and the exterior product in the Clifford algebra, and constructed, in all characteristics ≠ 2, a privileged linear isomorphism from the Clifford algebra to the exterior algebra (without antisymmetric products of vectors). [In the above \(\hat u\) means the grade involute of u, that is, for a homogeneous element a ∈ ⋀ k V we have \({\hat a}\) = (-1)ka.]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • R.Ablamowicz, P.Lounesto, J.Maks?: Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989. Found. Phys. 21 (1991), 735–748.

    Article  ADS  Google Scholar 

  • L. Ahlfors, P. Lounesto: Some remarks on Clifford algebras. Complex Variables, Theory and Application 12 (1989), 201–209.

    MathSciNet  MATH  Google Scholar 

  • S. L. Altmann Rotations, Quaternions and Double Groups. Clarendon Press, Oxford, 1986.

    Google Scholar 

  • E. Artin: Geometric Algebra. Interscience, New York, 1957, 1988.

    MATH  Google Scholar 

  • M. F. Atiyah, R. Bott, A. Shapiro: Clifford modules. Topology 3, suppl. 1 (1964), 3–38.

    Article  MathSciNet  Google Scholar 

  • Reprinted in R. Bott: Lectures on K(X). Benjamin, New York, 1969, pp. 143–178.

    Google Scholar 

  • Reprinted in Michael Atiyah: Collected Works, Vol. 2. Clarendon Press, Oxford, 1988, pp. 301–336.

    Google Scholar 

  • I. M. Benn, R. W. Tucker: An Introduction to Spinors and Geometry with Applications in Physics. Adam Hilger, Bristol, 1987.

    Google Scholar 

  • E. F. Bolinder: Unified microwave network theory based on Clifford algebra in Lorentz space. Conference Proceedings, 12th European Microwave Conference (Helsinki 1982), Microwave Exhibitions and Publishers, Turnbridge Wells, 1982, pp. 25–35.

    Google Scholar 

  • E. F. Bolinder: Clifford algebra: What is it? IEEE Antennas and Propagation Society Newsletter 29 (1987), 18–23.

    Google Scholar 

  • N. Bourbaki: Algèbre, Chapitre 9, Formes sesquilinéaires et formes quadratiques. Hermann, Paris, 1959.

    Google Scholar 

  • F. Brackx, R. Delanghe, F. Sommen. Clifford Analysis. Research Notes in Mathematics 76, Pitman Books, London, 1982.

    Google Scholar 

  • R. Brauer, H. Weyl: Spinors in n dimensions. Amer. J. Math. 57 (1935), 425–449.

    Article  MathSciNet  Google Scholar 

  • Reprinted in Selecta Hermann Weyl, Birkhäuser, Basel, 1956, pp. 431–454.

    Google Scholar 

  • P. Budinich, A. Trautman: The Spinorial Chessboard. Springer, Berlin, 1988. R. Carmichael: Book Review (F. Brackx, R. Delanghe, F. Sommer’. Clifford Analysis). Bull. A.er. Math. Soc. 11 (1984), 227–240.

    Article  Google Scholar 

  • E. Cartan (exposé d’après l’article allemand de E. Study): Nombres complexes. In J. Molk (red.): Encyclopédie des sciences mathématiques, Tome I, vol$11, Fasc. 4, art. I5 (1908), pp. 329–468.

    Google Scholar 

  • Reprinted in E. Cartan: OEuvres Complètes, Partie II. Cauthier-Villars, Paris, 1953, pp. 107–246.

    Google Scholar 

  • C. Chevalley: Theory of Lie Groups. Princeton University Press, Princeton, 1946.

    MATH  Google Scholar 

  • C. Chevalley: The Algebraic Theory of Spinors. Columbia University Press, New York, 1954.

    MATH  Google Scholar 

  • C. Chevalley: The Construction and Study of Certain Important Algebras. Mathematical Society of Japan, Tokyo, 1955.

    Google Scholar 

  • J. S. R. Chisholm, A. K. Common (eds.): Proceedings of the NATO and SERC Workshop on ‘Clifford Algebras and Their Applications in Mathematical Physics,’ Canterbury, England, U.K., 1985. Reidel, Dordrecht, 1986.

    Google Scholar 

  • W. K. Clifford: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1 (1878), 350–358.

    Google Scholar 

  • W. K. Clifford: On the classification of geometric algebras. In R. Tucker (ed.): Mathematical Papers by William Kingdon Clifford, Macmillan, London, 1882, pp. 397–401. (Reprinted by Chelsea, New York, 1968.) Title of talk announced already in Proc. London Math. Soc. 7 (1876), p. 135.

    Google Scholar 

  • A. Crumeyrolle: Orthogonal and Symplectic Clifford Algebras, Spinor Structures. Kluwer, Dordrecht, 1990.

    Book  MATH  Google Scholar 

  • R. Deheuvels: Formes quadratiques et groupes classiques. Presses Universitaires de France, Paris, 1981.

    MATH  Google Scholar 

  • R. Delanghe, F. Sommen, V. Soucek: Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator. Kluwer, Dordrecht, 1992.

    Book  MATH  Google Scholar 

  • P. A. M. Dirac: The quantum theory of the electron. Proc. Roy. Soc. A117 (1928), 610–624.

    Google Scholar 

  • L. Gârding: Marcel Riesz in memoriam. Acta Math. 124 (1970), pp. I-XI. Reprinted in M. Riesz, Collected Papers, pp. 1–9.

    Google Scholar 

  • L. Gârding, L. Hörmander (eds.): Marcel Riesz, Collected Papers. Springer, Berlin, 1988.

    Google Scholar 

  • J. Gilbert, M. Murray: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  • W. Greub: Multilinear Algebra, 2nd edn. Springer, Berlin, 1978.

    Google Scholar 

  • F. R. Harvey: Spinors and Calibrations. Academic Press, San Diego, 1990. J. Helmstetter: Algèbres de Clifford et algèbres de Weyl. Cahiers Math. 25, Montpellier, 1982.

    Google Scholar 

  • D. Hestenes: Space-Time Algebra. Gordon and Breach, New York, 1966, 1987, 1992.

    Google Scholar 

  • D. Hestenes, G. Sobczyk: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht, 1984, 1987.

    Book  MATH  Google Scholar 

  • B. Jancewicz: Multivectors and Clifford Algebra in Electrodynamics. World Scientific Publ., Singapore, 1988.

    MATH  Google Scholar 

  • G. Juvet: Opérateurs de Dirac et équations de Maxwell. Comment. Math. Helv. 2 (1930), 225–235.

    Google Scholar 

  • E. Köhler: Der innere Differentialkalkúl. Rendiconti di Matematica e delle sue Applicazioni (Roma) 21 (1962), 425–523.

    Google Scholar 

  • Y. Kawada, N. Iwahori: On the structure and representations of Clifford algebras. J. Math. Soc. Japan 2 (1950), 34–43.

    Article  MathSciNet  MATH  Google Scholar 

  • M.-A. Knus: Quadratic Forms, Clifford Algebras and Spinors. Univ. Estadual de Campinas, SP, 1988.

    Google Scholar 

  • T. Y. Lam: The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, 1980.

    MATH  Google Scholar 

  • O. Laporte, G.E. Uhlenbeck: Application of spinor analysis to the Maxwell and Dirac equations. Phys. Rev. 37 (1931), 1380–1397.

    Article  ADS  Google Scholar 

  • H. B. Lawson, M.-L. Michelsohn: Spin Geometry. Princeton Univerity Press, Princeton, NJ, 1989.

    MATH  Google Scholar 

  • H. C. Lee: On Clifford algebras and their representations. Ann. of Math. 49 (1948), 760–773.

    Google Scholar 

  • R. Lipschitz: Principes d’un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions. C. R.

    Google Scholar 

  • Acad. Sci. Paris 91 (1880), 619–621, 660–664. Reprinted in Bull. Soc. Math. (2) 11 (1887), 115–120.

    Google Scholar 

  • R. Lipschitz: Untersuchungen liber die Summen von Quadraten. Max Cohen und Sohn, Bonn, 1886, pp. 1–147. (The first chapter of pp. 5–57 translated into French by J. Molk: Recherches sur la transformation, par des substitutions réelles, d’une somme de deux ou troix carrés en elle-même. J. Math. Pures Appl. (4) 2 (1886), 373–439.

    Google Scholar 

  • French résumé of all three chapters in Bull. Sci. Math. (2) 10 (1886), 163–183.

    Google Scholar 

  • R. Lipschitz (signed): Correspondence. Ann. of Math. 69 (1959), 247–251.

    Google Scholar 

  • P. Lounesto: Report of Conference, NATO and SERC Workshop on ‘Clifford Algebras and Their Applications in Mathematical Physics,’ University of Kent, Canterbury, England, 1985. Found. Phys. 16 (1986), 967–971.

    Google Scholar 

  • A. Micali, Ph. Revoy: Modules quadratiques. Cahiers Math. 10, Montpellier, 1977. Bull. Soc. Math. France 63, suppl. (1979), 5–144.

    Google Scholar 

  • A. Micali, R. Boudet, J. Helmstetter (eds.): Proceedings of the Workshop on ‘Clifford Algebras and their Applications in Mathematical Physics,’ Montpellier, France, 1989. Kluwer, Dordrecht, 1992.

    Google Scholar 

  • W. Pauli: Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 42 (1927), 601–623.

    Google Scholar 

  • I. R. Porteous: Topological Geometry. Van Nostrand Reinhold, London, 1969. Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  • M. Riesz: En dskddlig bild av den icke-euklidiska geometrien, geometriska strövtdg room relativitetsteorien. Lunds Universitets Arsskrift, Lund, 1943, pp. 3–76.

    Google Scholar 

  • M. Riesz: L ’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81 (1949), 1–123; Collected Papers, pp. 571–793.

    Google Scholar 

  • M. Riesz: Sur certain notions fondamentales en théorie quantique relativiste. C. R. 10e Congrès Math. Scandinaves, Copenhagen, 1946. Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 123–148; Collected Papers, pp. 545–570.

    Google Scholar 

  • M. Riesz: L ’équation de Dirac en relativité générale. Tolfte(=12.) Skandinaviska Matematikerkongressen i Lund, 1953. Hâkan Ohlssons boktryckeri, Lund, 1954, pp. 241–259; Collected Papers, pp. 814–832.

    Google Scholar 

  • M. Riesz: Clifford Numbers and Spinors. The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series No. 38, University of Maryland, 1958.

    Google Scholar 

  • S. Salomon. Riemannian Geometry and Holonomy Groups. Longman Scientific, Essex, 1989.

    Google Scholar 

  • F. Sauter: Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren. Z. Phys. 63 (1930), 803–814.

    Google Scholar 

  • L. Silberstein: The Theory of Relativity. Macmillan, London, 1914.

    MATH  Google Scholar 

  • K. Th. Vahlen: Uber höhere komplexe Zahlen. Schriften der phys.-ökon. Gesellschaft zu Königsberg 38 (1897), 72–78.

    Google Scholar 

  • K. Th. Vahlen: Uber Bewegungen und complexe Zahlen. Math. Ann. 55 (1902), 585–593.

    Article  MathSciNet  MATH  Google Scholar 

  • B. L. van der Waerden: On Clifford algebras. Nederl. Akad. Wetensch. Proc. Ser. A69 (1966), 78–83.

    Google Scholar 

  • B. L. van der Waerden: A History of Algebra. Springer, Berlin, 1985.

    Book  MATH  Google Scholar 

  • E. Witt: Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1937), 31–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lounesto, P. (1993). Marcel Riesz’s Work on Clifford Algebras. In: Bolinder, E.F., Lounesto, P. (eds) Clifford Numbers and Spinors. Fundamental Theories of Physics, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1047-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1047-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4279-8

  • Online ISBN: 978-94-017-1047-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics