Skip to main content

Part of the book series: Mathematics and Its Applications () ((MAEE,volume 61))

Abstract

The notion of the Shannon entropy appears frequently and is important in many works. In this Chapter we will review some of the characterizations of it and of the concept of the gain of information with functional inequalities. Similarly, we shall present a characterization of Rényi’s generalized concept of information measure and gain of information with the aid of functional inequalities. These inequalities, to be discussed, have also other interpretations.

This Chapter is partly based on a manuscript of P. Fischer of the University of Guelph. It has been edited to conform to the style of the rest of the book. In addition other minor editing has been done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SHANNON, C. E., The mathematical theory of communication, Bell Syst. Techn. Journal 27 (1948), 379–423; 623–656.

    MathSciNet  Google Scholar 

  2. HAMMING, R. W., “Coding and Information Theory”, New Jersey, 1980.

    Google Scholar 

  3. KIRMSER, P. G., Problem E1274, Amer. Math. Monthly 64 (1957), 432.

    MathSciNet  Google Scholar 

  4. RÉNYI, A., “Probability Theory”, Amsterdam-London, 1970.

    Google Scholar 

  5. FISCHER, P., On some new generalizations of Shannon’s inequality, Pac. J. Math. 70 (1977), 351–360.

    Article  MATH  Google Scholar 

  6. FISCHER, P., On the inequality \(\sum {pif(pi)} \sum {pif(qi)} \), Metrika 18 (1972), 199 - 208.

    Google Scholar 

  7. ACZÉL, J. and J. PFANZAGL, Remarks on the measurement of subjective probability and information, Metrika 11 (1966), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  8. FISCHER, P., Sur l’inegalite \(\sum {pif(pi)} \sum {pif(qi)} \), Aequationes Math. 2 (1969), 363.

    Google Scholar 

  9. MUSZELY, Gy., On continuous solutions of a functional inequality, Metrika 20 (1973), 65–69.

    Article  MathSciNet  MATH  Google Scholar 

  10. CSASZAR, A., Sur une class des fonctions non mesurables, Fund. Math. 36 (1949), 72–76.

    MathSciNet  MATH  Google Scholar 

  11. FISCHER P., On the inequality \(\sum\nolimits_{i = 1}^n {{p_i}\frac{{f\left( {{p_i}} \right)}}{{f\left( {{q_i}} \right)}}} \geqslant 1\), Pac. J. Math. 60 (1975), 65 - 74.

    Google Scholar 

  12. FISCHER P., On the inequality \(\sum {pi\frac{{f(pi)}}{{f(qi)}} \leqslant 1} \), Canad. Math. Bull. 17 (1974), 193–199.

    Google Scholar 

  13. ACZÉL, J. and A. M. OSTROWSKI, On the characterization of Shannon’s entropy by Shannon’s inequality, J. Austral. Math. Soc. 16 (1973), 368–374.

    Article  MathSciNet  MATH  Google Scholar 

  14. WALTER, W., Remark on a Paper by Aczél and Ostrowski, J. Austral. Math. Soc. 22A (1976), 165–166.

    Article  MATH  Google Scholar 

  15. FISCHER, P., On the inequality \(\sum {g(pi)f(pi)\sum {g(pi)f(qi)} } \), Aequationes Math. 10 (1974), 23 - 33.

    Google Scholar 

  16. FISCHER, P., Sur l’inégalité \(\sum {\left[ {pif(pi) + qif(qi)} \right]} \sum {\left[ {pif(qi) + qif(pi)} \right]} \), Periodica Mathematica Hungarica 5 (1974), 87 - 92.

    Google Scholar 

  17. KARDOS, P., On the inequality \(\sum\nolimits_{i = 1}^n {{p_i}\frac{{{f_i}\left( {{p_i}} \right)}}{{{f_i}\left( {{q_i}} \right)}} \leqslant 1} \), Canad. Math. Bull. 22 (1979), 483 - 489.

    Google Scholar 

  18. FEINSTEIN, A., “Foundations of Information Theory”, New York, 1958.

    Google Scholar 

  19. STOLARSKY, K. B., A stronger logarithmic inequality suggested by the entropy inequality, SIAM J. Math. Anal. 11 (1980), 242–247.

    Article  MathSciNet  MATH  Google Scholar 

  20. KHINCHIN, A. I., “Mathematical Foundations of Information Theory”, New York, 1957.

    Google Scholar 

  21. CSISZAR, I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungarica 2 (1967), 299–318.

    MathSciNet  MATH  Google Scholar 

  22. CSISZAR, I., Informtion measures: A critical survey, in Trana. 7th Prague Conf. Inf. Th. Stat. Decision Funct. Rand. Prob., Prague, 1978.

    Google Scholar 

  23. J., On Shannon’s inequality, optimal coding, and characterizations of Shannon’s and Rényi’s entropies, Inst. Naz. Alta Mat. Symp. Math. 15 (1975), 153–179.

    Google Scholar 

  24. NATH, P. and D. P. MITTAL, A generalization of Shannon’s inequality and its application in coding theory, Information and Control 23 (1973), 439–445.

    Article  MathSciNet  MATH  Google Scholar 

  25. CLAUSING, A., Type t entropy and majorization, SIAM J. Math. Anal. 14 (1983), 203–208.

    Article  MathSciNet  MATH  Google Scholar 

  26. ISIHARA, A., Information loss and entropy increase, J. Math. A.al. Appl. 39 (1972), 314–317.

    Article  MathSciNet  MATH  Google Scholar 

  27. KAPUR, J. N., On convex semimetric spaces and generalized Shannon inequalities, Indian J. Pure Appl. Math. 18 (1987), 122–135.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1993). Shannon’s Inequality. In: Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1043-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1043-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4225-5

  • Online ISBN: 978-94-017-1043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics