Skip to main content

Cratering Chronology and the Evolution of Mars

  • Conference paper

Part of the Space Sciences Series of ISSI book series (SSSI,volume 12)

Abstract

Results by Neukum et al. (2001) and Ivanov (2001) are combined with crater counts to estimate ages of Martian surfaces. These results are combined with studies of Martian meteorites (Nyquist et al., 2001) to establish a rough chronology of Martian history. High crater densities in some areas, together with the existence of a 4.5 Gyr rock from Mars (ALH84001), which was weathered at about 4.0 Gyr, affirm that some of the oldest surfaces involve primordial crustal materials, degraded by various processes including megaregolith formation and cementing of debris. Small craters have been lost by these processes, as shown by comparison with Phobos and with the production function, and by crater morphology distributions. Crater loss rates and survival lifetimes are estimated as a measure of average depositional/erosional rate of activity.

We use our results to date the Martian epochs defined by Tanaka (1986). The high crater densities of the Noachian confine the entire Noachian Period to before about 3.5 Gyr. The Hesperian/Amazonian boundary is estimated to be about 2.9 to 3.3 Gyr ago, but with less probability could range from 2.0 to 3.4 Gyr. Mid-age dates are less well constrained due to uncertainties in the Martian cratering rate. Comparison of our ages with resurfacing data of Tanaka et al. (1987) gives a strong indication that volcanic, fluvial, and periglacial resurfacing rates were all much higher in approximately the first third of Martian history. We estimate that the Late Amazonian Epoch began a few hundred Myr ago (formal solutions 300 to 600 Myr ago). Our work supports Mariner 9 era suggestions of very young lavas on Mars, and is consistent with meteorite evidence for Martian igneous rocks 1.3 and 0.2 – 0.3 Gyr old. The youngest detected Martian lava flows give formal crater retention ages of the order 10 Myr or less. We note also that certain Martian meteorites indicate fluvial activity younger than the rocks themselves, 700 Myr in one case, and this is supported by evidence of youthful water seeps. The evidence of youthful volcanic and aqueous activity, from both crater-count and meteorite evidence, places important constraints on Martian geological evolution and suggests a more active, complex Mars than has been visualized by some researchers.

Keywords

  • Lava Flow
  • Lunar Planet
  • Mars Global Surveyor
  • Martian Surface
  • Crater Floor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bogard, D.D., and Johnson, P.: 1983, `Martian Gases in an Antarctic Meteorite?’, Science 221, 651654.

    Google Scholar 

  • Bridges, J.C., and Grady, M.M.: 2000, `Evaporite Mineral Assemblages in the Nakhlite (Martian) Meteorites’, Earth Planet. Sci. Lett. 176, 267–279.

    CrossRef  ADS  Google Scholar 

  • Chapman, C.R.: 1974, `Cratering on Mars. I Cratering and Obliteration History. II Implications for Future Cratering Studies from Mariner 4 Reanalysis’, Icarus 22, 272–300.

    CrossRef  ADS  Google Scholar 

  • Chapman, C.R., Pollack, J., and Sagan, C.: 1969, `An Analysis of the Mariner 4 Photography of Mars’, Astron. J. 74, 1039–1051.

    CrossRef  ADS  Google Scholar 

  • Golombek, M.P., and Bridges, N.T.: 2000, `Erosion Rates on Mars and Implications for Climate

    Google Scholar 

  • Change: Constraints from the Pathfinder Landing Site’, J. Geophys. Res. 105, 1841–1853. Greeley, R., Kuzmin, R.O., and Haberle, R.M.: 2001, `Aeolian Processes and Their Effects on

    Google Scholar 

  • Understanding the Chronology of Mars’, Space Sci. Rev.,this volume.

    Google Scholar 

  • Grier, J.A., Hartmann, W.K., Berman, D.C., Goldman, E.B., Esquerdo, G.A.: 2000, `Constraining the Age of Martian Polar Strata by Crater Counts’, Amer. Astron. Soc., DPS Meeting, abstracts #32, #58.03.

    Google Scholar 

  • Grieve, R.A., and Shoemaker, E.: 1994, `The Record of Past Impacts on Earth’, in T. Gehrels (ed.), Hazards Due to Comets and Asteroids, Univ. Arizona Press, Tucson, Arizona, pp. 417–462. Hartmann, W.K.: 1966a, `Martian Cratering’, Icarus 5, 565–576.

    Google Scholar 

  • Hartmann, W.K.: 1966b, `Early Lunar Cratering’, Icarus 5, 406–418.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K.: 1971, `Martian Cratering III: Theory of Crater Obliteration’, Icarus 15, 410–428. Hartmann, W.K.: 1973, `Martian Cratering 4: Mariner 9 Initial Analysis of Cratering Chronology’, J. Geophys. Res. 78, 4096–4116.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K.: 1977, `Relative Crater Production Rates on Planets’, Icarus 31, 260–276. Hartmann, W.K.: 1978, `Martian Cratering V: Toward an Empirical Martian Chronology, and its Implications’, Geophys. Res. Lett. 5,450–452.

    Google Scholar 

  • Hartmann, W.K.: 1984, `Does “saturation” Cratering Exist in the Solar System?’, Proc. I5 th Lunar Planet. Sci. Conf., 348–349 (abstract).

    Google Scholar 

  • Hartmann, W.K.: 1995, `Planetary Cratering I: Lunar Highlands and Tests of Hypotheses on Crater Populations’, Meteoritics 30, 451.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K.: 1998, `Martian Crater Populations and Obliteration Rates: First Results from Mars Global Surveyor’, Proc. 29 th Lunar Planet. Sci. Conf, abstract #1115.

    Google Scholar 

  • Hartmann, W.K.: 1999, `Martian Cratering VI. Crater Count Isochrons and Evidence for Recent Volcanism from Mars Global Surveyor’, Meteoritics Planet. Sci. 34, 167–177.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K.: 2001, `Martian Seeps and Their Relation to Youthful Geothermal Activity’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., and Gaskell, R.W.: 1997, `Planetary Cratering 2: Studies of Saturation Equilibrium’, Meteoritics Planet. Sci. 32, 109–121.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K., and Berman, D.C.: 2000, `Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications’, J. Geophys. Res. 105, 15,011–15,025.

    Google Scholar 

  • Hartmann, W.K., Cruikshank, D.P., Degewij, J., Capps, R.W.: 1981, `Surface materials on unusual planetary object Chiron’, Icarus 47, 333–341.

    CrossRef  ADS  Google Scholar 

  • Hartmann, W.K., Malin, M.C., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., and Veverka, J.: 1999, `Recent Volcanism on Mars from Crater Counts’, Nature 397, 586–589.

    CrossRef  ADS  Google Scholar 

  • Ivanov, B.A.: 2001, ‘Mars/Moon Cratering Rate Ratio Estimates’, this volume.

    Google Scholar 

  • Jones, K.L.: 1974, `Martian Obliterational History’, Ph.D. Thesis Brown Univ., Providence, RI, USA. Keszthelyi, K., McEwen, A.S., and Thordarson, T.: 2000. `Terrestrial Analogs and Thermal Models for Martian Flood Lavas’, J. Geophys. Res. 105, 15,027–15, 050.

    Google Scholar 

  • Leighton, R.B., Murray, B., Sharp, R., Allen, J., and Sloan, R.: 1965, `Mariner IV Photography of Mars: Initial Results’, Science 149, 627–630.

    CrossRef  ADS  Google Scholar 

  • Lissauer, J.J., Squyres, S.W., and Hartmann, W.K.: 1988, `Bombardment History of the Saturn System’, J. Geophys. Res. 93, 13,776–13,804.

    Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000a, `Evidence for Recent Groundwater Seepage and Surface Runoff on Mars’, Science 288, 2330–2335.

    CrossRef  ADS  Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000b, `Sedimentary Rocks of Early Mars’, Science 290, 1927–1937.

    CrossRef  ADS  Google Scholar 

  • Malin, M.C., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., McEwen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A., and Warren, J.L.: 1998, `Early Views of the Martian Surface from the Mars Orbiter Camera of Mars Global Surveyor’, Science 279, 1681.

    CrossRef  ADS  Google Scholar 

  • Melosh, H.J.: 1989, `Impact Cratering. A Geologic Process.’, Oxford Univ. Press, New York. Neukum, G.: 1983, Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitation

    Google Scholar 

  • Dissertation for Faculty Membership, Ludwig-Maximilians Univ. München, Munich, Germany,186 pp.

    Google Scholar 

  • Neukum, G., and Wise, D.U.: 1976, `Mars–A Standard Crater Curve and Possible new Time Scale’, Science 194, 1381–1387.

    CrossRef  ADS  Google Scholar 

  • Neukum, G., and Hiller, K.: 1981, `Martian Ages’, J. Geophys. Res. 86, 3097–3121.

    CrossRef  ADS  Google Scholar 

  • Neukum, G., and Ivanov, B.A.: 1994, `Crater Size Distributions and Impact Probabilities on Earth

    Google Scholar 

  • from Lunar, Terrestrial-Planet, and Asteroid Cratering Data’, in T. Gehrels (ed.), Hazards due to Comets and Asteroids,Univ. Arizona Press, Tucson, pp. 359–416.

    Google Scholar 

  • Neukum, G., König, B., Storzer, D., and Fechtig, H.: 1975, `Chronology of Lunar Cratering’, Proc. 6 th Lunar Planet. Sci. Conf., 598 (abstract).

    Google Scholar 

  • Neukum, G., Ivanov, B., and Hartmann, W.K.: 2001, `Cratering Records in the Inner Solar System in Relation to the Lunar Reference System’, Space Sci. Rev., this volume.

    Google Scholar 

  • Nyquist, L.E., Wooden, J., Bansal, B., Wiesmann, H., McKay, G., and Bogard, D.D.: 1979, `Rb-Sr Age of the Shergotty Achondrite and Implications for Metamorphic Resetting of Isochron Ages’, Geochim. Cosmochim. Acta 43, 1057–1074.

    CrossRef  ADS  Google Scholar 

  • Nyquist, K., Bogard, D., Shih, C.-Y., Greshake, A., Stöffler, D., and Eugster, O.: 2001, `Ages and Geologic Histories of Martian Meteorites’, Space Sci. Rev., this volume.

    Google Scholar 

  • Öpik, E.J.: 1965, Mariner IV and Craters on Mars’, Irish Astron..1. 7, 92.

    ADS  Google Scholar 

  • Öpik, E.J.: 1966, `The Martian Surface’, Science 153, 255.

    CrossRef  ADS  Google Scholar 

  • Papanastassiou, D.A., and Wasserburg, G.J.: 1974, `Rb-Sr Age’, Geophys. Res. Lett 1, 23.

    CrossRef  ADS  Google Scholar 

  • Pike, R.J.: 1977, `Apparent Depth/Apparent Diameter Relation for Lunar Craters’, Proc. 8 th Lunar Sci. Conf. 3, Pergamon Press, New York, USA, pp. 3427–3436.

    Google Scholar 

  • Plescia, J.B.: 1990, `Recent Flood Lavas in the Elysium Region of Mars’, Icarus 88, 465–490. Sawyer, D.J., McGehee, M.D., Canepa, J., and Moore, C.B.: 2000, `Water Soluble Ions in the Nakhla Martian Metorite’, Met. Planet. Sci. 35, 743–747.

    Google Scholar 

  • Scott, D.H., Tanaka, K.L., Greeley, R., and Guest, J.E.: 1987, Geologic Maps of the Western Equatorial, Eastern Equatorial and Polar Regions of Mars, Maps. I-1802-A, B and C, Miscellaneous Investigation Series, 1986–1987, U.S. Geological Survey, Flagstaff.

    Google Scholar 

  • Shih, C.-Y., Nyquist, L.E., Reese, Y., and Wiesmann, H.: 1998, `The Chronology of the Nakhlite, Lafayette: Rb-Sr and Sm-Nd Isotopic Ages’, Proc. 29th Ann. Lunar Planet. Sci. Conf, abstract #1145.

    Google Scholar 

  • Soderblom, L.A., Condit, C.D., West, R.A., Herman, B.M., and Kreidler, T.J.: 1974, `Martian Planetwide Crater Distributions — Implications for Geologic History and Surface Processes’, Icarus 22, 239–263.

    CrossRef  ADS  Google Scholar 

  • Stöffler, D., and Ryder, G.: 2001, `Stratigraphy and Isotope Ages of Lunar Geologic Units:Chronological Standard for the Inner Solar System’, Space Sci. Rev., this volume.

    Google Scholar 

  • Strom, R.G., Croft, S., and Barlow, N.: 1992, `The Martian Impact Cratering Record’, in H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 383–423.

    Google Scholar 

  • Swindle, T.D., Treiman, A.H., Lindstrom, D.J., Burkland, M.K., Cohen, B.A., Grier, J.A., Li, B., and Olson, E.K.: 2000, `Noble Gases in Iddingsite from the Lafayette Meteorite: Evidence for Liquid Water on Mars in the last few Hundred Million Years’, Met. Planet. Sci. 35, 107–115.

    CrossRef  ADS  Google Scholar 

  • Tanaka, K.L.: 1986, `The Stratigraphy of Mars’, Proc. 17 th Lunar Planet. Sci. Conf., J. Geophys. Res. 91, suppl., 139–158.

    Google Scholar 

  • Tanaka, K.L., Isbell, N.K., Scott, D.H., Greeley, R., and Guest, J.E.: 1987, `The Resurfacing History of Mars — A Synthesis of Digitized, Viking-based Geology’, Proc. 18 th Lunar Planet. Sci. Conf., 1987, Cambridge University Press/LPI, 1988, Cambridge and New York/Houston, TX, USA, pp. 665–678.

    Google Scholar 

  • Wood, C.A., and Ashwal, L.D.: 1981, `Meteorites from Mars: Prospects, Problems and Implications’, Proc. 12 th Lunar Planet. Sci. Conf., 1197–1199 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hartmann, W.K., Neukum, G. (2001). Cratering Chronology and the Evolution of Mars. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds) Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1035-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5725-9

  • Online ISBN: 978-94-017-1035-0

  • eBook Packages: Springer Book Archive