Skip to main content

Geomorphologic Evidence for Liquid Water

  • Conference paper

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 12))

Abstract

Besides Earth, Mars is the only planet with a record of resurfacing processes and environ­mental circumstances that indicate the past operation of a hydrologic cycle. However the present-day conditions on Mars are far apart of supporting liquid water on the surface. Although the large-scale morphology of the Martian channels and valleys show remarkable similarities with fluid-eroded features on Earth, there are major differences in their size, small-scale morphology, inner channel structure and source regions indicating that the erosion on Mars has its own characteristic genesis and evolution. The different landforms related to fluvial, glacial and periglacial activities, their relations with volcanism, and the chronology of water-related processes, are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre-Puente, J., Costard, F., and Posado-Cano., R.: 1994, `Contribution to the Study of Thermal Erosion on Mars’, J. Geophys. Res. 99, 5657–5667.

    Article  ADS  Google Scholar 

  • Allen, C.C.: 1979, `Volcano-Ice Interactions on Mars’, J. Geophys. Res. 84, 8048–8059.

    Article  ADS  Google Scholar 

  • Allen, C.C.: 1980, `Icelandic Subglacial Volcanism: Thermal and Physical Studies’, J. Geol. 88, 108–117.

    Article  ADS  Google Scholar 

  • Anderson, D.L., Gatto, L.W., and Ugolini, F.: 1973, `An Examination of Mariner 6 and 7 Imagery for Evidence of Permafrost Terrain on Mars’, in F.G. Sanger (ed.), Permafrost: 2nd Int. Conf., Nat. Acad. Sci., Washington, D.C., 449–508.

    Google Scholar 

  • Anderson, W.M.: 1992, `Glaciation in Elysium’, LPI Tech. Rep. 92–08, 1.

    Google Scholar 

  • Baker, V.R.: 1973, `Daleohydrology and Sedimentology of Lake Missoula Flooding of Eastern Washington’, Geol. Soc. Am. SP-144, Geol. Soc. Am., Boulder.

    Google Scholar 

  • Baker, V.R.: 1979, `Erosional Processes in Channelized Water Flows in Mars’, J. Geophys. Res. 84, 7985–7993.

    Article  ADS  Google Scholar 

  • Baker, V.R., and Kochel, R.C.: 1979, `Morphometry of Streamlined Forms in Terrestrial and Martian Channels’, Proc. 9 th Lunar Planet. Sci. Conf, 3181–3193.

    Google Scholar 

  • Baker, V.R.: 1982, The Channels of Mars, Univ. Texas Press, Austin.

    Google Scholar 

  • Baker, V.R.: 1990, `Spring Sapping and Valley Network Development’, Geol. Soc. Am. SP-252, 235–265.

    Google Scholar 

  • Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S., Komatsu, G.,, and Kale, V.S.: 1991, `Ancient Oceans, Ice Sheets and the Hydrologic Cycle on Mars’, Nature 352, 589–594.

    Article  ADS  Google Scholar 

  • Baker, V.R., Can, M.H., Gulick, V.C., Williams, C.R., and Marley, M.S.: 1992, `Channels and Valley Networks’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, 493–522.

    Google Scholar 

  • Banerjee, I., and McDonald, B.C.: 1975, `Nature of Esker Sedimentation’, in A.V. Jopling and B.C. McDonald (eds.), Glaciofluvial and Glaciolacustrine Sedimentation, Spec. Publ. 23, Soc. Econ. Paleontol. Mineral., 132–154.

    Google Scholar 

  • Barlow, N.G., and Bradley, T.L.: 1990, `Martian Impact Craters: Correlations of Ejecta and Interior Morphologies with Diameter, Latitude and Terrain’, Icarus 87, 156–179.

    Article  ADS  Google Scholar 

  • Barlow, N.G., Boyce, J.M., Costard, F.M., Craddok, R.A., Garvin, J.B., Sakimoto, S.E.H., Kuzmin, R.O., Roddy, D.J., and Soderblom, L.A.: 2000, `Standardizing the Nomenclature of Martian Impact Crater Ejecta Morphologies’, J. Geophys. Res.,in press.

    Google Scholar 

  • Barsch, D.: 1988, `Rockglaciers’, in M.J. Clark (ed.), Advances in Periglacial Geomorphology, Wiley, Chichester, 69–90.

    Google Scholar 

  • Battistini, R.: 1984, `L’Utilisation des Cratères Météoritiques à Ejectas Fluidisés Comme Moyen d’Etude Spatiale et Chronologique de l’Eau Profonde (Hydrolithosphère) de Mars’, Rev. Géom. Dyn. 33, 25–41.

    Google Scholar 

  • Benn, D.I., and Evans, D.J.A.: 1998, `Glaciers and Glaciation’, Arnold, London, 734 pp.

    Google Scholar 

  • Björnsson, H.: 1974, `Explanation of Jökulhlaups from Grunsvötn, Vatnajökull Iceland’, Jökull 24, 1–26.

    Google Scholar 

  • Björnsson, H.: 1975, `Subglacial Water Reservoirs, Jökulhlaups and Volcanic Eruptions’, Jökull 25, 1–14.

    Google Scholar 

  • Björnsson, H.: 2000, `Jökulhlaups in Iceland: Characteristics and Impact’, 2nd Mars Polar Sci. Conf, abstract #4064.

    Google Scholar 

  • Blasius, K.R., Cutts, J.A., Guest, J.E., and Masursky, H.: 1977, `Geology of the Valles Marineris: First Analysis of Imaging From the Viking 1 Orbiter Primary Mission’, J. Geophys. Res. 82, 4067–4091.

    Article  ADS  Google Scholar 

  • Blasius, K.R., and Cutts, J.A.: 1980, `Global Patterns of Primary Crater Ejecta Morphology on Mars’, in Reports of Planetary Geology and Geophysics Program-1980, NASA-TM 82385, Washington, D.C., 147–149.

    Google Scholar 

  • Bourgeois, O., Dauteuil, O., and Van Vliet-Lanoë, B.: 1998, `Pleistocene Subglacial Volcanism in Iceland: Tectonic Implications’, Earth Planet. Sci. Lett. 164, 165–178.

    Article  ADS  Google Scholar 

  • Boyce, J.M., and Roddy, D.J.: 1997, `Martian Crater Ejecta, Emplacement and Implications for Water in the Subsurface’, Proc. 28 th Lunar Planet. Sci. Conf, LPI, Houston, 145–146.

    Google Scholar 

  • Brennand, T.A.: 2000, `Deglacial Meltwater Drainage and Glaciodynamics: Inferences from Lauren-tide Eskers, Canada’, Geomorphology 32, 263–293.

    Article  ADS  Google Scholar 

  • Brinton, K.L.F., Tsapin, A.I., McDonald, G.D., and Gilichinsky, D.: 1999, Aminostratigraphy of Organisms in Antartic and Siberian Permafrost Cores’, Fifth Int. Conf on Mars, LPI Contribution No. 972, LPI, Houston, abstract #6137 (CD-ROM).

    Google Scholar 

  • Brook, G.A.: 1982, Ice-Wedge Polygons, Baydjarakhs, and Alases in Lunae Planum and Chryse Planitia, Mars’, in Reports of Planetary Geology Program–1982, NASA-TM 85127, Washington, D.C., 265–267.

    Google Scholar 

  • Carr, M.H.: 1977, `Distribution and Emplacement of Ejecta Around Martian Impact Craters’, in D.J. Roddy, R.O. Pepin, and R.B. Merrill (eds.), Impact and Explosion Cratering, Pergamon Press, New York, 593–602.

    Google Scholar 

  • Carr, M.H.: 1979, `Formation of Martian Flood Features by Release of Water from Confined Aquifers’, J. Geophys. Res. 84, 2995–3007.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1981, The Surface of Mars, Yale Univ. Press, New Haven.

    Google Scholar 

  • Can, M.H.: 1983, `The Stability of Streams and Lakes on Mars’, Icarus 56, 476–495.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1986, `Mars: A water-rich Planet?’, Icarus 56, 187–216.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1992, ‘Post-Noachian Erosion Rates: Implication for Mars Climate Change’, Proc. 23rd Lunar Planet. Sci. Conf, 205–205.

    Google Scholar 

  • Carr, M.H.: 1995, `The Martian Drainage System and the Origin of Valley Networks and Fretted Channels’, J. Geophys. Res. 100, 7479–7507.

    Article  ADS  Google Scholar 

  • Can, M.H.: 1996a, `Channels and Valleys on Mars: Cold Climate Features Formed as a Result of a Thickening Cryosphere’, Planet. Space Sci. 44, 1411–1423.

    Article  ADS  Google Scholar 

  • Can, M.H.: 1996b, Water on Mars, Oxford Univ. Press, New York, 229 pp.

    Google Scholar 

  • Can, M.H., and Schaber, G.G.: 1977, `Martian Permafrost Features’, J. Geophys. Res. 82,4039–4054. Carr, M.H., and Clow, G.D.: 1981, `Martian Channels and Valleys: Their Characteristics, Distribution and Age’, Icarus 48, 91–117.

    Google Scholar 

  • Carr, M.H., and Chuang, F.C.: 1997, `Martian Drainage Densities’, J. Geophys. Res. 102, 9145–9152. Can, M.H., and Malin, M.C.: 2000, `Meter-scale Characteristics of Martian Channels and Valleys’, Icarus 146, 366–386.

    Article  ADS  Google Scholar 

  • Carr, M.H., Crumpler, L.S., Cutts, J.A., Greeley, R., Guest, J.E., and Masursky, H.: 1977a, `Martian

    Google Scholar 

  • Impact Craters and Emplacement of Ejecta by Surface Flow’, J. Geophys. Res. 82, 4055–4065.

    Google Scholar 

  • Can, M.H., Greeley, R., Blasius, K.R., Guest, J.E., and Murray, J.B.: 1977b, `Some Martian Volcanic

    Google Scholar 

  • Features as Viewed from the Viking Orbiters’, J. Geophys. Res. 82, 3985–4015.

    Google Scholar 

  • Can, M.H., Wu, S.C., Jordan, R., and Schafer, F.J.: 1987, `Volumes of Channels, Canyons and Chaos in the Circum-Chryse Region of Mars’, Proc. I8 th Lunar Planet. Sci. Conf, 155–156.

    Google Scholar 

  • Chapman, M.G.: 1994, `Evidence, Age, and Thickness of Frozen Paleolake in Utopia Planitia, Mars’, Icarus 109, 393–406.

    Article  ADS  Google Scholar 

  • Clifford, S.M.: 1980, `A Model for the Removal and Subsurface Storage of a Primitive Martian Ice Sheet’, in Reports of Planetary Geology and Geophysics Program-1990, NASA-TM 82385, Washington, D.C., 405–407.

    Google Scholar 

  • Clifford, S.M.: 1987, `Polar Basal Melting on Mars’, J. Geophys. Res. 92, 9135–9152.

    Article  ADS  Google Scholar 

  • Clifford, S.M.: 1993, `A Model for the Hydrologic and Climatic Behaviour of Water on Mars’, J. Geophys. Res. 98, 10,973–11,016.

    Google Scholar 

  • Clifford, S.M., and Hillel, D.: 1983, `The Stability of Ground Ice in the Equatorial Regions of Mars’, J. Geophys. Res. 88, 2456–2474.

    Article  ADS  Google Scholar 

  • Clifford, S.M., and Parker, T.J.: 1999, `The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains’, Fifth Int. Conf. on Mars, July 19–24, 1999, Pasadena, CA, abstract #6236.

    Google Scholar 

  • Colaprete, A., and Jakosky, B.M.: 1998, `Ice Flow and Rock Glaciers on Mars’, J. Geophys. Res. 103, 5897–5909.

    Article  ADS  Google Scholar 

  • Coradini, M., and Flamini, E.: 1979, `A Thermodynamical Study of the Martian Permafrost’, J. Geophys. Res. 84, 8115–8130.

    Article  ADS  Google Scholar 

  • Costard, F.: 1987, `Quelques Modelés Liés à des Lentilles de Glace Fossiles sur Mars’, Z. Geomorph. N. F. 31, 243–251.

    Google Scholar 

  • Costard, F.M.: 1988, `Thickness of Sedimentary Deposits of the Mouth of Outflow Channels’, Proc. 19 th Lunar Planet. Sci. Conf, LPI, Houston, 211–212.

    Google Scholar 

  • Costard, F.M.: 1989, `The Spatial Distribution of Volatiles in the Martian Hydrolithosphere’, Earth, Moon, and Planets 45, 265–290.

    ADS  Google Scholar 

  • Costard, F.M.: 1994, `Unusual Concentrations of Rampart Craters at the Mouths of Outflow Channels, Mars’, Proc. 25 th Lunar Planet. Sci. Conf, LPI, Houston, 287–288.

    Google Scholar 

  • Costard, F.M., and Kargel, J.S.: 1995, `Outwash Plains and Thermokarst on Mars’, Icarus 114, 93112.

    Article  Google Scholar 

  • Costard, F.M., and Kargel, J.S.: 1999, `New Evidences for Ice Rich Sediments in the Northern Plains from MGS Data’, Fifth Int. Conf. on Mars, LPI Contribution No. 972, LPI, Houston, abstract #6088 (CD-ROM).

    Google Scholar 

  • Costard, F., Aguirre-Puente, J., Greeley, R., and Makhloufi, N.: 1999, `Martian Fluvial-thermal Erosion: Laboratory Simulation’, J. Geophys. Res. 104, 14, 091–14098.

    Google Scholar 

  • Craddock, R.A., and Maxwell, T.A.: 1993, `Geomorphic Evolution of the Martian Highlands Through Ancient Fluvial Processes’, J. Geophys. Res. 98, 3453–3468.

    Article  ADS  Google Scholar 

  • Crown, D.A., Price, K.H., and Greeley, R.: 1992, `Geologic Evolution of the East Rim of the Hellas Basin, Mars’, Icarus 100, 1–25.

    Article  ADS  Google Scholar 

  • Crown, D.A. and R. Greeley, 1993. Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars, J. Geophys. Res. 98, 3431–3451.

    Article  ADS  Google Scholar 

  • Cutts, J.A., and Blasius, K.R.: 1981, `Origin of Martian Outflow Channels: The Eolian Hypothesis’, J. Geophys. Res. 86, 5075–5102.

    Article  ADS  Google Scholar 

  • ESA Exobiology Study Team: 1999, `Exobiology in the Solar System and the Search for Life on Mars’, in A. Wilson (ed.), ESA SP 1231, ESA Publications Division, Noordwijk, 188 pp.

    Google Scholar 

  • Evans, N., and Rossbacher, L.A.: 1980, `The Last Picture Show: Small-Scale Patterned Ground in Lunae Planum’, in Reports of Planetary Geology Program -1980, NASA-TM 82385, NASA, Washington, D.C., 376–378.

    Google Scholar 

  • Farmer, C.B., and Doms, P.E.: 1979, `Global and Seasonal Water Vapor on Mars and Implications for Permafrost’, J. Geophys. Res. 84, 2881–2888.

    Article  ADS  Google Scholar 

  • Fink, J.H., Greeley, R., and Gault, D.E.: 1981, `Impact Cratering Experiments in Bingham Materials and the Morphology of Craters on Mars and Ganymede’, Proc. 12 th Lunar and Planetary Sci. Conf, 1649–1666.

    Google Scholar 

  • Forsgren, B.: 1968, `Studies of Palsas in Finland, Norway and Sweden, 1964–1966’, Biuletyn Peryglacjalny 17, 117–123.

    Google Scholar 

  • French, H.M.: 1976, The Periglacial Environment, Longman, London, 309 pp.

    Google Scholar 

  • Frey, H., Lowry, B.L., and Chase, S.A.: 1979, `Pseudocraters on Mars’, J. Geophys. Res. 84, 80758086.

    Google Scholar 

  • Frey, H., and Jarosewich, M.: 1982, ‘Subkilometer Martian Volcanoes: Properties and Possible Terrestrial Analogs’, J. Geophys. Res. 87, 9867–9879.

    Article  ADS  Google Scholar 

  • Gatto, L.W., and Anderson, D.M.: 1975, `Alaskan Thermokarst Terrain and Possible Martian Analogs’, Science 188, 255–257.

    Article  ADS  Google Scholar 

  • Gault, D.E., and Greeley, R.: 1978, `Exploratory Experiments of Impact Craters Formed in Viscous-Liquid Targets: Analogs for Martian Rampart Craters?’, Icarus 34, 486–495.

    Article  ADS  Google Scholar 

  • Goldspiel, J.M., and Squyres, S.W.: 2000, `Groundwater Sapping and Valley Formation on Mars’, Icarus 148, 176–192.

    Article  ADS  Google Scholar 

  • Greeley, R., Fink, J., Gault, D.E., Snyder, D.B., Guest, J.E., and Schultz, P.H.: 1980, `Impact Cratering in Viscous Targets: Laboratory Experiments’, Proc. I1 th Lunar Planet Sci. Conf, 2075–2097.

    Google Scholar 

  • Greeley, R., and Spudis, P.D.: 1978, `Volcanism on Mars’, Rev. Geophys. Space Phys. 19, 13–41.

    Article  ADS  Google Scholar 

  • Greeley, R., and Guest, J.E.: 1987, Geologic Map of the Eastern Equatorial Region of Mars, scale 1:15,000,000, U.S.G.S. Misc. Inv. Series Map I-1802-B.

    Google Scholar 

  • Greeley, R. and S.A. Fagents, 2000. Icelandic pseudocraters as analogs to some volcanic cones on Mars, J. Geophys. Res. (in process).

    Google Scholar 

  • Grout, F.F., Sharp, R.P., and Schwartz, G.M.: 1959, `The Geology of Cook County, Minnesota’, Minnesota Geol. Soc. Bull. 39, 67–69.

    Google Scholar 

  • Gudmundsson, M.T.: 1996, Ice-Volcano Interaction at the Subglacial Grlmsvötn Volcano, Iceland, Glaciers, Ice Sheets and Volcanoes: A Tribute to Mark F. Meier’, in CRREL Special Report 96–27, 34–40.

    Google Scholar 

  • Gulick, V.C., and Baker, V.R.: 1990, `Origin and Evolution of Valleys on Martian Volcanoes’, J. Geophys. Res. 95, 14,325–14,344.

    Google Scholar 

  • Hamlin, S.E., Kargel, J.S., Tanaka, K.L., Lewis, K.J., and MacAyeal, D.R.: 2000, `Preliminary Studies of Icy Debris Flows in the Martian Fretted Terrain’, Proc. 3 P Lunar Planet. Sci. Conf., abstract #1785 (CD-ROM).

    Google Scholar 

  • Hartmann, W.K.: 1978, `Martian Cratering V: Toward an Empirical Martian Chronology, and its Implications’, Geophys. Res. Lett. 5, 450–452.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 2001, `Martian Seeps and Their Relation to Youthful Geothermal Activity’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., and Neukum, G.: 2001, `Cratering Chronology and the Evolution of Mars’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., 1981, `Chronology of Planetary Volcanism by Comparative Studies of Planetary Cratering’, in: Basaltic Volcanism on the Terrestrial Planets,Pergamon, New York, 1049–1127.

    Google Scholar 

  • Head, J.W., Kreslaysky, M., Hiesinger, H., Ivanov, M., Pratt, S., Seibert, N., Smith, D.E., and Zuber, M.T.: 1998, `Oceans in the Past History of Mars: Tests for Their Presence Using Mars Orbiter Laser Altimeter (MOLA) Data’, Geophys. Res. Lett. 25, 4401–4404.

    Article  ADS  Google Scholar 

  • Head, J.W., Hiesinger, H., Ivanov, B.A., Kreslaysky, M.A., Pratt, S., and Thomson, B.J.: 1999, ‘Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data’, Science 286, 2134–2137.

    Article  ADS  Google Scholar 

  • Head, J.W.: 2000a, `Tests for Ancient Polar Deposits on Mars: Morphology and Topographic Relationships of Esker-Like Sinuous Ridges (Dorsa Argentea) Using MOLA Data’, Proc. 31s t Lunar Planet. Sci. Conf., LPI, Houston, abstract #1117 (CD-ROM).

    Google Scholar 

  • Head, J.W.: 20006, `Tests for Ancient Polar Deposits on Mars: Assessment of Morphology and Topographic Relationships of Large Pits (Angusti and Sisyphi Cavi) Using MOLA Data’, Proc. 31s t Lunar Planet. Sci. Conf.,LPI, Houston, abstract #1118 (CD-ROM).

    Google Scholar 

  • Hickson, C.J.: 2000, `Physical Controls and Resulting Morphological Forms of Quaternary Ice-Contact Volcanoes in Western Canada’, Geomorphology 32, 239–261.

    Article  ADS  Google Scholar 

  • Hiesinger, H., and Head, J.W.: 2000, `Characteristics and Origin of Polygonal Terrain in Southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data’, J. Geophys. Res. 105, 11, 999–12022.

    Google Scholar 

  • Hodges, C.A., and Moore, H.J.: 1979, `The Subglacial Birth of Olympus Mons and Its Aureoles’, J. Geophys. Res. 84, 8061–8074.

    Article  ADS  Google Scholar 

  • Howard, A.D.: 1981, `Etched Plains and Braided Ridges of the South Polar Region of Mars: Features Produced by Basal Melting of Ground Ice?’, in Reports of Planetary Geology Program, 19791980, NASA-TM 84211, 286–288.

    Google Scholar 

  • Jakosky, B.M., and Farmer, C.B.: 1982, `The Seasonal and Global Behavior of Water Vapor in the Mars Atmosphere: Complete Global Results of the Viking Atmospheric Water Vapor Detector Experiment’, J. Geophys. Res. 87, 2999–3019.

    Article  ADS  Google Scholar 

  • Jankowski, D.G., and Squyres, S.W.: 1992, `The Topography of Impact Craters in `Softened’ Terrain on Mars’, Icarus 100, 26–39.

    Article  ADS  Google Scholar 

  • Jankowski, D.G. and Squyres, S.W.: 1993, `Softened Impact Craters on Mars: Implications for Ground Ice and the Structure of the Martian Megaregolith’ Icarus 106, 365–379.

    Article  ADS  Google Scholar 

  • Johansen, L.A.: 1979, `The Latitude Dependence of Martian Splosh Cratering and its Relationship to Water’, in Reports of Planetary Geological Program, 1978–1979, NASA TM-80339, Washington, D.C., 123–125.

    Google Scholar 

  • Jones, J.G.: 1966, Intraglacial Volcanoes of Southwest Iceland and Their Significance in the Interpretation of the Form of the Marine Basaltic Volcanoes’, Nature 212, 586–588.

    Article  ADS  Google Scholar 

  • Jones, J.G.: 1969, Intraglacial Volcanoes of the Laugarvatn Region, Southwest Iceland, I.’, Quart. J. Geol. Soc. London 124, part 3 (495), 197–211.

    Google Scholar 

  • Kachurin, S.P.: 1962, `Thermokarst Within the Territory of the U.S.S.R.’, Biuletyn Peryglacjalny 11, 49–55.

    Google Scholar 

  • Kargel, J.S.: 1986, `Morphologic Variations of Martian Rampart Crater Ejecta and their Dependencies and Implications’, Proc. Lunar and Planetary Sci. Conf. XVII, Lunar and Planetary Institute, Houston, 410–411.

    Google Scholar 

  • Kargel, J.S., and Strom, R.G.: 1990, `Ancient Glaciation on Mars’, Proc. 21s t Lunar Planet. Sci. Conf., LPI, Houston, 597–598.

    Google Scholar 

  • Kargel, J.S., and Strom, R.G.: 1991, `Terrestrial Glacial Eskers: Analogs for Martian Sinuous Ridges’, Proc. 23rd Lunar Planet. Sci. Conf., LPI, Houston, 683–684.

    Google Scholar 

  • Kargel, J.S., and Strom, R.G.: 1992, `Ancient Glaciation on Mars’, Geology 20, 3–7.

    Article  ADS  Google Scholar 

  • Kargel, J., Baker, V.R., Begét, J.E., Lockwood, J.F., Péwé, T.L., Shaw, J.S., and Strom, R.G.: 1995, `Evidence of Ancient Continental Glaciation in the Martian Northern Plains’, J. Geophys. Res. 100, 5351–5368.

    Article  ADS  Google Scholar 

  • Kjartansson, G.: 1959, `The Moberg Formation’, in S. Thorarinsson and G. Kjartansson (eds.), On the Geology and Geomorphology of Iceland, Geogr. Ann. Rep., Stockholm, 135–169.

    Google Scholar 

  • Kjartansson, G.: 1960, `The Moberg Formation, On the Geology and Geophysics of Iceland’, in S. Thorarinsson (ed.), Proc. 21st Session Int. Geol. Congr., Guide to Excursion No. A2, Reykjavik, 21–28.

    Google Scholar 

  • Komar, P.D.: 1979, `Comparison of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth’, Icarus 37, 156–181.

    Article  ADS  Google Scholar 

  • Komar, P.D.: 1980, `Modes of Sediment Transport in Channelized Water Flows and Ramifications to the Erosion of Martian Outflow Channels’, Icarus 42, 317–329.

    Article  ADS  Google Scholar 

  • Komar, P.D.: 1983, `Shapes of Streamlined Islands on Earth and Mars: Experiments and Analyses of Minimum-drag Form’, Geology 11, 651–655.

    Article  ADS  Google Scholar 

  • Komar, P.D.: 1984, `The Lemniscate Loop Comparison with the Shape of Streamlined Landforms’, J. Geol. 92, 133–145.

    Article  ADS  Google Scholar 

  • Komatsu, G., and Baker, V.R.: 1997, `Paleohydrology and Flood Geomorphology of Ares Vallis’,J. Geophys. Res. 102, 4151–4160.

    Google Scholar 

  • Kristmannsdnttir, H., Björnsson, A., Pâlsson, S., and Sveinbjörnsdettir, À.E.: 1999, `The Impact of the 1996 Subglacial Volcanic Eruption in Vatnajökull on the River Jökulsâ â Fjöllum, North Iceland’, J. Volcanol. Geotherm. Res. 92, 359–372.

    Article  ADS  Google Scholar 

  • Kuzmin, R.O., Bobina, N.N., Zabalueva, E.V., and Shashkina, V.P.: 1988, `Structural Inhomogeneities of the Martian Cryolithosphere’, Solar System Research 22, 121–133.

    ADS  Google Scholar 

  • Lachenbruch, A.H.: 1962, `Mechanics of Thermal Contraction Cracks and Ice Wedge Polygons in Permafrost’, Geol. Soc. Am., Spec. Paper 70, 69 pp.

    Google Scholar 

  • Laity, J.E., and Malin, M.C.: 1985, `Sapping Processes and the Development of Theater-headed Valley Networks on the Colorado Plateau’, Geol. Soc. Amer. Bull. 96, 203–217.

    Article  ADS  Google Scholar 

  • Lee, H.: 1965, `Investigations of Eskers for Mineral Exploration’, Geol. Survey Can. Paper 65–14, 1–17.

    Google Scholar 

  • Leffingwell, E.K.: 1915, `Ground-Ice Wedges; the Dominant Form of Ground-Ice on the North Coast of Alaska’, J. Geol. 23, 635–654.

    Article  ADS  Google Scholar 

  • Lockwood, J.F., Kargel, J.S., and Strom, R.B.: 1992, `Thumbprint Terrain on the Northern Plains: A Glacial Hypothesis’, Proc. 23rd Lunar Planet. Sci. Conf, LPI, Houston, 795–796.

    Google Scholar 

  • Lozinski, W.: 1909, ‘Ober die mechanische Verwitterung der Sandsteine im gemässigten Klima’, Acad. Sci. Cracovie Bull. Internat., Cl. Sci. Math. et Naturelles I, 1–25.

    Google Scholar 

  • Lucchitta, B.K., and Anderson, D.M.: 1980, `Martian Outflow Channels Sculptured by Glaciers’, in Reports of Planetary Geology Program–1980, NASA TM-81776, 271–273.

    Google Scholar 

  • Lucchitta, B.K.: 1981, `Mars and Earth: Comparison of Cold-Climate Features’, Icarus 45, 264–303. Lucchitta, B.K.: 1982, `Ice Sculpture in the Martian Outflow Channels’, J. Geophys. Res. 87, 9951–9973.

    Article  ADS  Google Scholar 

  • Lucchitta, B.K.: 1983, `Permafrost on Mars: Polygonally Fractured Ground’, Proc.4th Int. Conf. on Permafrost, Nat. Acad. Press, 744–748.

    Google Scholar 

  • Lucchitta, B.K.: 1984, `Ice and Debris in the Fretted Terrain, Mars’, J. Geophys. Res. 89, suppl., 409–418.

    Google Scholar 

  • Lucchitta, B.K.: 1985, `Geomorphologic Evidence for Ground Ice on Mars’, in J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), Ices in the Solar System, D. Reidel Publ. Co., Dordrecht, 583–604.

    Google Scholar 

  • Lucchitta, B.K., and Ferguson, H.M.: 1983, `Chryse Basin Channels: Low Gradients and Ponded Flows’, J. Geophys. Res. 88 Suppl., 553–568.

    Google Scholar 

  • Lucchitta, B.K., Anderson, D.M., and Shoji, H.: 1981, `Did Ice Streams Carve Martian Outflow Channels?’, Nature 290, 759–763.

    Google Scholar 

  • Lucchitta, B.K., Ferguson, H.M., and Summers, C.: 1986a, `Sedimentary Deposits in the Northern Lowland Plains, Mars’, J. Geophys. Res. 91, 166–174.

    Article  ADS  Google Scholar 

  • Lucchitta, B.K., Ferguson, H.M., and Summers, C.: 1986b, `Northern Sinks on Mars’, Proc. 17 th Lunar Planet. Sci. Conf, LPI, Houston, 498–499.

    Google Scholar 

  • Lundqvist, J.: 1969, `Earth and Ice Mounds: A Terminological Discussion’, T.L. Péwé (ed.), The Periglacial Environment,McGill-Queen’s Univ. Press, Montreal, 203–215.

    Google Scholar 

  • Mackay, J.R.: 1973, `The Growth of Pingos, Western Arctic Coast, Canada’, Can. J. Earth Sci. 10, 979–1004.

    Article  ADS  Google Scholar 

  • Mackay, J.R.: 1977, `Pulsating Pingos, Tuktoyaktuk Peninsula, N.W.T.’, Can. J. Earth Sci. 14, 209222.

    Google Scholar 

  • Malin, M.C.: 1976, J. Geophys. Res. 81, 4825.

    Article  ADS  Google Scholar 

  • Malin, M.C., and Carr, M.H.: 1999, `Groundwater Formation of Martian Valleys’, Nature 397, 589–591

    Article  ADS  Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 1999, `Oceans or Seas in the Martian Northern Lowlands: High Resolution Imaging Tests of Proposed Shorelines’, Geophys. Res. Lett. 26, 3049–3052.

    Article  ADS  Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000a, `Evidence for Recent Groundwater Seepage and Surface Runoff on Mars’, Science 288, 2330–2335.

    Article  ADS  Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000b, `Sedimentary Rocks of Early Mars’, Science 290, 927–937.

    Article  Google Scholar 

  • Mangold, N.: 2000, `Giant Paleo-Eskers of Mauretania: Analogs for Martian Esker-Like Landforms’, Second Mars Polar Sci. Cont, abstract #4031.

    Google Scholar 

  • Mangold, N., Allemand, P., and Peulvast, J.-P.: 2000a, `Topography of Ice Related Features on Mars’, Proc. 31st Lunar Planet. Sci. Conf, LPI, Houston, abstract #1131 (CD-ROM).

    Google Scholar 

  • Mangold, N., Costard, F., and Peulvast, J.-P.: 2000b, `Thermokarstic Degradation of Lobate Debris Aprons and Fretted Channels’, Second Mars Polar Sci. Conf, abstract #4032.

    Google Scholar 

  • Mangold, N., Costard, F., and Peulvast, J.-P.: 2000c, `Thermokarstic Degradation of the Martian Surface’, Second Mars Polar Sei. Conf, abstract #4052.

    Google Scholar 

  • Marchenko, A.G., Basilevsky, A.T., Neukum, G., Hauber, E., Hoffmann, E., and Cook, A.C.: 1998, `The Study of the Mouth of Ares and Tiu Valles, Mars’, Proc. 29 th Lunar Planet. Sci. Conf, abstract #1174.

    Google Scholar 

  • Mars Channel Working Group: 1983, `Channels and Valleys on Mars’, Geol. Soc. Amer. Bull. 94, 1035–1054.

    Article  Google Scholar 

  • Masursky, H.: 1973, `An Overview of Geologic Results from Mariner 9’, J. Geophys. Res. 78, 40374047.

    Google Scholar 

  • Masursky, H., Boyce, J.V., Dial, A.L., Jr., Schaber, G.G., and Strobell, M.E.: 1977, `Classification and Time of Formation of Martian Channels Based on Viking Data’, J. Geophys. Res. 82, 4016–4037.

    Article  ADS  Google Scholar 

  • Mathews, W.H.: 1947, —Tuyas“, Flat-Topped Volcanoes in Northern British Columbia’, Am. J. Sci. 249, 560–570.

    Google Scholar 

  • McCauley, J.F.: 1978, Geologic Map of the Coprates Quadrangle of Mars, scale 1:5,000,000. U.S. Geol. Surv. Misc. Inv. Series Map1–897.

    Google Scholar 

  • McGill, G.E.: 1985, `Age and Origin of Large Martian Polygons’, Proc. Lunar Planet. Sci. Con, LPI, Houston, 534–535.

    Google Scholar 

  • McGill, G.E.: 1986, `The Giant Polygons of Utopia, Northern Martian Plains’, Geophys. Res. Lett. 13, 705–708.

    Article  ADS  Google Scholar 

  • McGill, G., and Hills, L.S.: 1992, L.S.: 1992, `Origin of Giant Martian Polygons’, J. Geophys. Res. 97, 2633 2647.

    Google Scholar 

  • McKay, C.P., and Davis, W.L.: 1991, `Duration of Liquid Water Habitats on Early Mars’, Icarus 90, 214–221.

    Article  ADS  Google Scholar 

  • Mellon, M.T.: 1997, `Thermal Contraction Cracks in Martian Permafrost: Implications for Small-Scale Polygonal Features’, Proc. 28th Lunar Planet. Sci. Con, LPI, Houston, 933–934.

    Google Scholar 

  • Melosh, H.J.: 1989, Impact Cratering, A Geologic Process, Oxford Univ. Press, New York, 245 pp.

    Google Scholar 

  • Metzger, S.M.: 1991, `A Survey of Esker Morphometries, the Connection to New York State Glaciation and Criteria for Subglacial Melt-Water Channel Deposits on the Planet Mars’, Proc. 22 nd Lunar Planet. Sci. Conf., LPI, Houston, 891–892.

    Google Scholar 

  • Metzger, S.M.: 1992, `The Eskers of New York State: Formation Process Implications and Esker-Like Features on the Planet Mars’, Proc. 23rd Lunar Planet. Sci. Conf., LPI, Houston, 901–902.

    Google Scholar 

  • Mouginis-Mark, P.J.: 1979, `Martian Fluidized Crater Morphology: Variations With Crater Size, Latitude, Altitude, and Target Material’, J. Geophys. Res. 84, 8011–8022.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J.: 1981, `Ejecta Emplacement and Modes of Formation of Martian Fluidized Ejecta Craters’, Icarus 45, 60–76.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J.: 1985, `Volcanic/Ground Ice Interactions in Elysium Planitia, Mars’, Icarus 64, 265–284.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J.: 1987, `Water or Ice in the Martian Regolith?: Clues from Rampart Craters Seen at Very High Resolution’, Icarus 71, 268–286.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L., and Head, J.W.: 1982, `Explosive Volcanism on Hecates Tholus, Mars: Investigation of Eruption Conditions’, J. Geophys. Res. 87, 9890–9904.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L., Head, J.W., Brown, S.H., Hall, J.L., and Sullivan, K.D.: 1984, `Elysium Planitia, Mars: Regional Geology, Volcanology, and Evidence for Volcano–Ground Ice Interactions’, Earth, Moon, and Planets 30, 149–173.

    ADS  Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L., and Zimbelman, R.J.: 1988, Polygenic Eruptions on Alba Patera

    Google Scholar 

  • Mars: Evidence of Channel Erosion on Pyroclastic Flows’, Bull. Vol. 50, 361–379.

    Google Scholar 

  • Muller, S.W.: 1947, `Permafrost or Permanently Frozen Ground and Related Engineering Problems’, J.W. Edwards, Ann Arbor, 231 pp.

    Google Scholar 

  • Mutch, T.A., Arvidson, R.E., Binder, Guinness, E.A., and Morris, E.C.: 1977, `The Geology of the Viking Lander 2 Site’, J. Geophys. Res. 82, 4452–4467.

    Article  ADS  Google Scholar 

  • Nedell, S.S., Squyres, S.W., and Andersen, D.W.: 1987, `Origin and Evolution of the Layered Deposits in the Valles Marineris, Mars’, Icarus 70, 409–441.

    Article  ADS  Google Scholar 

  • Nelson, F.E., Hinkel, K.M., and Outcalt, S.I.: 1992, `Palsa-Scale Frost Mounds’, in J.C. Dixon and A.D. Abrahams (eds.), Periglacial Geomorphology, Wiley, Chichester, 305–325.

    Google Scholar 

  • Neukum, G., and Wise, D.U.: 1976, `Mars: Standard Crater Curve and Possible New Time Scale’, Science 194, 1381–1387.

    Article  ADS  Google Scholar 

  • Neukum, G., and Hiller, K.: 1981, `Martian Ages’, J. Geophys. Res. 86, 3097–3121.

    Article  ADS  Google Scholar 

  • Nummedal, D.: 1978, `The Role of Liquefaction in Channel Development on Mars’, in Reports of Planetary Geology and Geophysics Program-1977–1988, NSA TM-79729, 257–259.

    Google Scholar 

  • Nummedal, D., and Prior, D.B.: 1981, `Generation of Martian Chaos and Channels by Debris Flow’, Icarus 45, 77–86.

    Article  ADS  Google Scholar 

  • Parker, T.J., Saunders, R.S., and Sneeberger, D.M.: 1989, `Transitional Morphology in the West Deuteronilus Mensae Region of Mars: Implications for Modification of the Plains/Upland Boundary’, Icarus 82, 111–145.

    Article  ADS  Google Scholar 

  • Parker, T.J., Gorcine, D.S., Saunders, R.S., Pieri, D.C., and Schneeberger, D.M.: 1993, `Coastal Geomorphology of the Martian Northern Plains’, J. Geophys. Res. 98, 11,061–11,078.

    Google Scholar 

  • Pechmann, J.C.: 1980, `The Origin of Polygonal Troughs in the Northern Plains of Mars’, Icarus 42, 185–210.

    Article  ADS  Google Scholar 

  • Pieri, D.C.: 1976, `Martian Channels: Distribution of Small Channels on the Martian Surface’, Icarus 27, 25–50.

    Article  ADS  Google Scholar 

  • Pieri, D.C.: 1980, `Martian Valleys: Morphology, Distribution, Age and Origin’, Science 210, 895–897.

    Article  ADS  Google Scholar 

  • Pissart, A.: 1988, `Pingos: An Overview of the Present State of Knowledge’, in M.J. Clark (ed.), Advances in Periglacial Geomorphology, Wiley, Chichester, 279–297.

    Google Scholar 

  • Popov, A.I.: 1956, `Le Thermokarst’, Biuletyn Peryglacjalny 4, 319–330.

    Google Scholar 

  • Reimers, C.E., and Komar, P.D.: 1979, `Evidence for Explosive Volcanic Density Currents on Certain Martian Volcanoes’, Icarus 39, 88–110.

    Article  ADS  Google Scholar 

  • Robinson, M.S., and Tanaka, K.L.: 1990, `Magnitude of a Catastrophic Flood Event at Kasei Valles’, Mars. Geology 18, 902–905.

    Article  ADS  Google Scholar 

  • Rossbacher, L.A., and Judson, S.: 1981, `Ground Ice on Mars: Inventory, Distribution, and Resulting Landforms’, Icarus 45, 39–59.

    Article  ADS  Google Scholar 

  • Rossi, A.P., Komatsu, G., and Kargel, J.S.: 2000, `Rock Glacier-Like Landforms in Valles Marineris, Mars’, Proc. 31s t Lunar Planet. Sci. Conf., LPI, Houston, abstract #1587 (CD-ROM).

    Google Scholar 

  • Schonfeld, E.: 1976, `On the Origin of Martian Channels’, Trans. AGU, Eos 57, 948.

    Google Scholar 

  • Schubert, G., and Spohn, T.: 1990, `Thermal History of Mars and the Sulfur Content of its Core’, J.

    Google Scholar 

  • Geophys. Res. 95, 14,095–14,104.

    Google Scholar 

  • Schultz, P.H., and Gault, D.E.: 1979, `Atmospheric Effects on Martian Ejecta Emplacement’, J. Geophys. Res. 84, 7669–7687.

    Article  ADS  Google Scholar 

  • Schultz, P.H., and Gault, D.E.: 1984, `On the Formation of Contiguous Ramparts around Martian Impact Craters’, Proc. 15 th Lunar Planet. Sci. Cont., LPI, Houston, 732–733.

    Google Scholar 

  • Scott, D.H., and Tanaka, K.L.: 1982, Ignimbrites of Amazonia Planitia Region of Mars’, J. Geophys. Res. 87, 1179–1190.

    Article  ADS  Google Scholar 

  • Scott, D.H., and Tanaka, K.L.: 1986, Geologic Map of the Western Equatorial Region of Mars, scale 1:15,000,000, U.S.G.S. Misc. Inv. Series Map I-1802-A.

    Google Scholar 

  • Scott, D.H., and Underwood, J.R.: 1991, `Mottled Terrain: A Continuing Martian Enigma’, in G. Ryder and V.L. Sharpton (eds.) Proc. 21s t Lunar Planet. Sci. Conf, LPI, Houston, 627–634.

    Google Scholar 

  • Scott, D.H., and Dohm, J.M.: 1992, `Martian Highland Channels: An Age Reassessment’, Proc. 23 rd Lunar Planet. Sci. Conf., 1251–1252.

    Google Scholar 

  • Scott, D.H., Chapman, M.G., Rice, J.W., and Dohm, J.M.: 1992, `New Evidence of Lakustrine Basins on Mars: Amazonis and Utopia Planitia’, Proc. 22’ ßd Lunar. Planet. Sci. Conf., 53–62.

    Google Scholar 

  • Seppälä, M.: 1988, ‘Palsas and Related Forms’, in M.J. Clerk (ed.), Advances in Periglacial Geomorphology, Wiley, Chichester, 247–278.

    Google Scholar 

  • Sharp, R.P.: 1973a, `Mars: Troughed Terrain’, J. Geophys. Res. 78, 4063–4072.

    Article  ADS  Google Scholar 

  • Sharp, R.P.: 1973b, `Mars: Fretted and Chaotic Terrain’, J. Geophys. Res. 78, 4073–4083.

    Article  ADS  Google Scholar 

  • Sharp, R.P.: 1988, `Living Ice’, Cambridge Univ. Press, Cambridge, 225 pp.

    Google Scholar 

  • Sharp, R.P., and Malin, M.C.: 1975, `Channels on Mars’, Geol. Soc. Amer. Bull. 86, 593–609.

    Article  ADS  Google Scholar 

  • Shoji, H., and Higashi, A.: 1978, `A Deformation Mechanism Map of Ice’, J. Glaciol. 21, 419–427.

    ADS  Google Scholar 

  • Shreve, R.L.: 1985, `Esker Characteristics in Terms of Glacier Physics’, Geol. Soc. Am. Bull. 96, 639–646.

    Article  ADS  Google Scholar 

  • Smith, D.E., 1999, `The Global Topography of Mars and Implications for Surface Evolution’, Science 284, 1495–1503.

    Google Scholar 

  • Squyres, S.W.: 1978, `Martian Fretted Terrain: Flow of Erosional Debris’, Icarus 34, 600–613.

    Article  ADS  Google Scholar 

  • Squyres, S.W.: 1979, `The Distribution of Lobate Debris Aprons and Similar Flows on Mars’, J. Geophys. Res. 84, 8087–8096.

    Article  ADS  Google Scholar 

  • Squyres, S.W.: 1989a, `Early Mars: Wet and Warm or Just Wet?’, Proc. 20 th Lunar Planet. Sci. Conf, 1044–1045.

    Google Scholar 

  • Squyres, S.W.: 1989b, `Water on Mars’, Icarus 79, 229–288.

    Article  ADS  Google Scholar 

  • Squyres, S.W., and Carr, M.H.: 1986, `Geomorphic Evidence for the Distribution of Ground Ice on Mars’, Science 231, 249–252.

    Article  ADS  Google Scholar 

  • Squyres, S.W., and Kasting, J.F.: 1994, `Early Mars: How Warm and How Wet?’, Science 265, 744748.

    Google Scholar 

  • Squyres, S.W., Wilhelms, D.E., and Moosman, A.C.: 1987, `Large-Scale Volcano-Ground Ice Interactions on Mars’, Icarus 70, 385–408.

    Article  ADS  Google Scholar 

  • Squyres, S.W., Clifford, S.M., Kuzmin, R.O., Zimbelman, J.R., and Costard, F.M.: 1992, `Ice In The Martian Regolith’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, 523–554.

    Google Scholar 

  • Tanaka, K.L., and Scott, D.H.: 1987, Geologic Map of the Polar Region of Mars, scale 1:15,000,000, U.S.G.S. Misc. Inv. Series Map I-1802-C.

    Google Scholar 

  • Tanaka, K.L., Scott, D.H., and Greeley, R.: 1992, `Global Stratigraphy’, in H.H. Kieffer, Univ. Arizona Press, Tucson, 354–382.

    Google Scholar 

  • Theilig, E., and Greeley, R.: 1979, `Plains and Channels in the Lunae Planum-Chryse Planitia Region of Mars’, J. Geophys. Res. 84, 7994–8010.

    Article  ADS  Google Scholar 

  • Thorarinsson, S.: 1953, `The Crater Groups in Iceland’, Bull. Volcanol. Ser. 2, 3–44.

    Article  ADS  Google Scholar 

  • Tmasson, H.: 2000, `Catastrophic Floods in Iceland’, Second Mars Polar Sci. Conf, abstract #4117.

    Google Scholar 

  • Tricart, J.: 1968, `Periglacial Landscapes’, in R.W. Fairbridge, Encyclopedia of Geomorphology, Reinhold Book Co., 829–833.

    Google Scholar 

  • Tricart, J.: 1969, Geomorphology of Cold Environments, Macmillan, London, 320 pp.

    Google Scholar 

  • Tsapin, A.I., McDonald, G.D., Andrews, M., Bhartia, R., Douglas, S., and Gilichinsky, D.: 1999, `Microorganisms from Permafrost Viable and Detectable by 16SRNA Analysis: A Model for Mars’, Fifth Im’. Conf on Mars, LPI Contribution No. 972, LPI, Houston, abstract #6104 (CD-ROM).

    Google Scholar 

  • Wahrhaftig, C., and Cox, A.: 1959, `Rock Glaciers in the Alaska Range’, Bull. Geol. Soc. Amer. 70, 383–436.

    Article  ADS  Google Scholar 

  • Wallace, D., and Sagan, C.: 1979, `Evaporation of Ice in Planetary Atmospheres: Ice Covered Rivers on Mars’, Icarus 39, 385–400.

    Article  ADS  Google Scholar 

  • Warren, W.P., and Ashley, G.M.: 1994, `Origin of the Ice-Contact Stratified Ridges (Eskers) of Ireland’, J. Sedimentary Res. A64, 433–449.

    Google Scholar 

  • Washburn, A.L.: 1973, `Periglacial Processes and Environments’, Edward Arnold, London, 320 pp.

    Google Scholar 

  • Werner, R., Schmincke, H.-U., and Sigvaldason, G.: 1996, `A New Model for the Evolution of Table Mountains: Volcanological and Petrological Evidence from Herdubreid and Herdubreidartog Volcanoes (Iceland)’, Geologische Rundschau 85, 390–397.

    Article  ADS  Google Scholar 

  • Williams, P.J., and Smith, M.W.: 1989, `The Frozen Earth’, Cambridge Univ. Press, Cambridge, 306 pp.

    Book  Google Scholar 

  • Wilson, I., and Mouginis-Mark, P.J.: 1987, `Volcanic Input to the Atmosphere from Alba Patera on Mars’, Nature 330, 354–357.

    Article  ADS  Google Scholar 

  • Wohletz, K.H., and Sheridan, M.F.: 1983, `Martian Rampart Crater Ejecta: Experiments and Analysis of Melt Water Interaction’, Icarus 56, 15–37.

    Article  ADS  Google Scholar 

  • Wright, H.E.: 1973, `Tunnel Valleys, Glacial Surges, and Subglacial Hydrology of the Superior Lobe, Minnesota’, The Wisconsinan Stage, Geol. Soc. Am. Memoir 136, 251–276.

    Article  Google Scholar 

  • Yoshikawa, K.: 2000, `Contraction Cracking and Ice Wedge Polygons on Mars’, Second Mars Polar Sci. Conf, abstract #4045.

    Google Scholar 

  • Yung, Y.L., and Pinto, J.P.: 1978, `Primitive Atmosphere and Implications for the Formation of Channels on Mars’, Nature 288, 735–738.

    Google Scholar 

  • Zimbelman, J.R., Clifford, S.M., and Williams, S.H.: 1988a, `Terrain Softening Revisited: Photogeological Considerations’, Proc. 19 th Lunar Planet. Sci. Conf, 1321–1322.

    Google Scholar 

  • Zimbelman, J.R., Clifford, S.M., and Williams, S.H.: 1988b, `Concentric Crater Fill on Mars: An Aeolian Alternative to Ice-Rich Mass Wasting’, Proc. 19 th Lunar Planet. Sci. Conf, 397–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Masson, P., Carr, M.H., Costard, F., Greeley, R., Hauber, E., Jaumann, R. (2001). Geomorphologic Evidence for Liquid Water. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds) Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1035-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5725-9

  • Online ISBN: 978-94-017-1035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics