Skip to main content

Interphase Cytogenetics in Understanding Chromosome and Telomere Dynamics During Prophase I: Implications for Meiotic Telomere Movements

  • Conference paper
Chromosomes Today

Abstract

Interphase cytogenetics (fluorescent in situ hybridization (FISH) to interphase nuclei; Cremer et al., 1986) has matured to a powerful tool capable to delineate whole chromosomes and subregions in nuclei, which usually lack chromosome-specific landmarks accessible to conventional staining methods. The possibility to simultaneously label several targets in interphase nuclei has led to widespread use of this technique in diagnostic settings and investigations on three-dimensional (3D) genome and chromosome organization during the cell cycle. Somatic interphase nuclei undergo architectural changes during development and differentiation. The most striking alterations of chromosome architecture and distribution occur during the extended prophase of the first of the two meiotic divisions. This article will focus on the contribution of interphase cytogenetics to the current view of chromosome organization and telomere dynamics during first meiotic prophase. It will be discussed that mammalian KU70 dsDNA end-binding protein may not play a structural role at the meiotic telomere. I will discuss a putative pathway linking the meiotic telomere to cell cycle progression, cytoskeleton and nuclear envelope that is based on recently disclosed two-hybrid interactions of the meiosis-specific telomere protein Ndj 1p of budding yeast. Other aspects of meiotic chromosome biology are dealt with elsewhere (e.g., Loidl, 1990; Kleckner, 1996; Roeder, 1997; Moens et al., 1998; Smith and Nicolas, 1998; Zickler and Kleckner, 1998; Villeneuve and Hillers, 2001; Cowan et al., 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed S, Hodgkin J (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403: 159–164.

    CAS  Google Scholar 

  • Albertson DG, Rose AM, Villeneuve AM (1997). In: Riddle DL, Blumenthal T, Meyer BJ and Priess JR eds. “C. elegans II”. Plainview, NY: Cold Spring Harbour Laboratory Press, pp. 47–78.

    Google Scholar 

  • Albini SM, Jones GH (1988). Synaptonemal complex spreading in Allium cepa and A. fistulosum. II. Pachytene observations. The SC karyotype and correspondence of late recombination nodules and chiasma. Chromosoma 95: 324–338.

    Article  Google Scholar 

  • Anderson LK, Offenberg HH, Verkuilen WM, Heyting C (1997). RecA-like proteins are components of early meioitc nodules in Lilly. Proc Natl Acad Sci USA 94: 6868–6873.

    Article  PubMed  CAS  Google Scholar 

  • Ashley T, Plug A (1998). Caught in the act: deducing meiotic function from protein immuno-localization. Curr Top Dev Biol 37: 201–239.

    Article  Google Scholar 

  • Bailey SM, Meyne J, Chen DJ, et al. (1999). DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA 96: 14, 899–14, 904.

    Google Scholar 

  • Bartkova J, Falck J, Rajpert-De Meyts E, et al. (2001). Chk2 tumour suppressor protein in human spermatogenesis and testicular germ-cell tumours. Oncogene 20: 5, 897–5, 902.

    Google Scholar 

  • Bascom-Slack CA, Dawson DS (1997). The yeast motor protein, Kar3p, is essential for meio-sis I. J Cell Biol 139: 459–467.

    Article  PubMed  CAS  Google Scholar 

  • Bass HW, Riera-Lizarazu O, Ananiev EV, et al. (2000). Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci 113: 1, 033–1, 042.

    Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, et al. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386: 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt, AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickinson HG, Dean C (1999). The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Bilaud T, Brun C, Ancelin K, et al. (1997). Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17: 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Bishop DK (1994). RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79: 1, 081–1, 092.

    Google Scholar 

  • Blasco MA, Lee HW, Hande MP, et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Blat Y, Kleckner N (1999). Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Borde V, Goldman AS, Lichten M (2000). Direct coupling between meiotic DNA replication and recombination initiation. Science 290: 806–809.

    Article  PubMed  CAS  Google Scholar 

  • Boveri T (1903). “Über die Konjugation der chromatischen Kernsubstanz”. In: ed. Korschelt E, Verhandlungen der dt. Zoolog. Ges. 13 Jahresvers. zu Würzburg, Leipzig: W. Engelmann, pp. 10–33.

    Google Scholar 

  • Broccoli D, Smogorzewska A, Chong L, de Lange T (1997). Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Buonomo SBC, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K (2000). Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8p by separin. Cell 103: 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Burgess SM, Kleckner N, Weiner BM (1999). Somatic pairing of homologs in budding yeast: existence and modulation. Genes Dev 13: 1, 627–1, 641.

    Google Scholar 

  • Carpenter, A (1975). Electron microscopy of meiosis in Drosophila melanogaster females. Chromosoma 51: 157–182.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter AT (1994). Chiasma function. Cell 77: 957–962.

    Article  PubMed  CAS  Google Scholar 

  • Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N (2000). Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo1 1p and positively by Rec8p. Genes Dev 14: 493–503.

    PubMed  CAS  Google Scholar 

  • Cheng EY, Gartler SM (1994). A fluorescent in situ hybridization analysis of X chromosome pairing in human female meiosis. Hum Genet 94: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Chevret E, Volpi EV, Sheer D (2000). Form and function in the human interphase chromosome. Cytogenet Cell Genet 90: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Hiraoka Y (2001). Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11: 1, 618–1, 623.

    Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, et al. (1994). Telomere-led premeiotic chromosome movement in fission yeast. Science 264: 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Imai Y, et al. (1997). Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J 16: 193–202.

    Article  CAS  Google Scholar 

  • Chong L, van Steensel B, Broccoli D, et al. (1995). A human telomeric protein. Science 270: 1, 663–1, 667.

    Google Scholar 

  • Chu S, Herskowitz I (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1: 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Chua, PR, Roeder GS (1997). Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev 11: 1, 786–1, 800.

    Google Scholar 

  • Chua PR, Roeder GS (1998). Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93: 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Conrad MN, Dominguez AM, Dresser ME (1997). Ndj 1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276: 1, 252–1, 255.

    Google Scholar 

  • Costanzo MC, Crawford ME, Hirschman, et al. (2001). YPDTM, PombePDTM, and WormPDTM: model organism volumes of the BioKnowledgeTM library, an integrated resource for protein information. Nucleic Acids Res 29: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997). Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998). Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392: 828–831.

    Article  PubMed  CAS  Google Scholar 

  • Corda Y, Schramke V, Longhese MP, et al. (1999). Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nat Genet 21: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Counce SJ, Meyer GF (1973). Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount electron microscopy. Chromosoma 44: 231–253.

    Article  PubMed  CAS  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001). The polar arrangement of telomeres in interphase and meiosis. rabl organization and the bouquet. Plant Physiol 125: 532–538.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Landegent J, Brückner A, et al. (1986). Detection of chromosome aberrations in the human interphase nucleus by visulization of specific target DNAs with radioactive and non radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet 74: 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Critchlow SE, Jackson SP (1998). DNA end-joining: from yeast to man. Trends Biochem Sci 23: 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, et al. (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1, 119–1, 131.

    Google Scholar 

  • Darlington CW (1931). Meiosis. Biol Rev 6: 221–264.

    Article  Google Scholar 

  • de Lange T (2001). Telomere capping–one strand fits all. Science 292: 1, 075–1, 076.

    Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, et al. (1998). Meiotic recombination in C. elegans ini-tiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996). Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Diede SJ, Gottschling DE (1999). Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99: 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth DJ, Suprapto A, Padovan JC, Chait BT, Wozniak RW, Rout MP, Aitchison JD (2001). Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J Cell Biol 153:1, 465–1, 478.

    Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994). Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107(Pt 10): 2, 749–2, 760.

    Google Scholar 

  • Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C (2001). Morphology and dynamics of chromosome territories in living cells. Biochim Biophys Acta 1551: M29–M39.

    PubMed  CAS  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000). Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113: 673–682.

    PubMed  CAS  Google Scholar 

  • Evans SK, Lundblad V (1999). Est1 and Cdc13 as comediators of telomerase access. Science 286: 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW (1956). The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol 2: 403.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW, Chemes HE (1979). Changes in distribution of nuclear pores during differentiation of the male germ cells. Tissue and Cell 11: 147–162.

    Article  PubMed  CAS  Google Scholar 

  • Flaggs G, Plug AW, Dunks KM, et al. (1997). Atm-dependent interactions of a mammalian chk1 homolog with meiotic chromosomes. Curr Biol 7: 977–986.

    Article  PubMed  CAS  Google Scholar 

  • Franklin AE, Cande WZ (1999). Nuclear organization and chromosome segregation. Plant Cell 11: 523–534.

    PubMed  CAS  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999). Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11: 809–824.

    PubMed  CAS  Google Scholar 

  • Galy V, Olivo-Marin JC, Scherthan H, et al. (2000). Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Garvik B, Carson M, Hartwell L (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15: 6, 128–6, 138.

    Google Scholar 

  • Gasser SM (2000). A sense of the end. Science 288: 1, 377–1, 379.

    Google Scholar 

  • Gelei J (1921). Weitere Studien über die Oogenese des Dendrocoelum lacteum. III. Die Konjugation der Chromosomen in der Literatur und meine Befunde. Archiv f Zellforsch 16: 300–365.

    Google Scholar 

  • Goedecke W, Eijpe M, Offenberg HH, et al. (1999). Mre1 1 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Goldman AS, Hulten MA (1992). Chromosome in situ suppression hybridisation in human male meiosis. J Med Genet 29: 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Gotta M, Laroche T, Formenton A, et al. (1996). The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134: 1,349–1, 363.

    Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994). Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125: 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Hardy CF, Pautz A (1996). A novel role for Cdc5p in DNA replication. Mol Cell Biol 16: 6, 775–6, 782.

    Google Scholar 

  • Hardy CF, Sussel L, Shore D (1992). A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6: 801–814.

    Article  PubMed  CAS  Google Scholar 

  • Hawley RS (1988). “Exchange and chromosomal segregation in eukaryotes”. In: Kucherlapati R and Smith GR, eds. Genetic Recombination. Washington DC: American Society of Microbiology, pp. 497–527.

    Google Scholar 

  • Hemann MT, Rudolph KL, Strong MA, et al. (2001). Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 12: 2, 023–2, 030.

    Google Scholar 

  • Heng HH, Chamberlain JW, Shi XM, et al. (1996). Regulation of meiotic chromatin loop size by chromosomal position. Proc Natl Acad Sci USA 93: 2, 795–2, 800.

    Google Scholar 

  • Heyting C (1996). Synaptonemal complexes: structure and function. Curr Opin Cell Biol 8: 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Holm PB (1977). Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lillium longiflorum (Thunb.) Carlsb Res Comm 42: 103–151.

    Google Scholar 

  • Hsu H-L, Gilley D, Blackburn EH, Chen DJ (1999). Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96: 12, 454–12, 458.

    Google Scholar 

  • Hunter N, Kleckner N (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106: 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Hunter N, Valentin BG, Lichten M, Kleckner N (2001). Gamma-H2AX illuminates meiosis. Nat Genet 27: 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Kanoh J, Ishikawa F (2001). spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1,624–1,630.

    Google Scholar 

  • Jenuwein T, Laible G, Dorn R, Reuter G (1998). SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell Mol Life Sci 54: 80–93.

    Article  PubMed  CAS  Google Scholar 

  • Jin Q-W, Trelles-Sticken E, Scherthan H, Loidl J (1998). Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Lim DS (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Keeney S (2001). Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52: 1–53.

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997). Meiosis-specific DNA double-strand breaks are cat-alyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Kishi S, Zhou XZ, Ziv Y, et al. (2001). Telomeric protein Pin2/TRF1 as an important ATM tar-get in response to double strand DNA breaks. J Biol Chem 276: 29, 282–29, 291.

    Google Scholar 

  • Kleckner N (1996). Meiosis: how could it work? Proc Natl Acad Sci USA 93: 8, 167–8, 174.

    Google Scholar 

  • Klein F, Mahr P, Galova M, et al. (1999). A central role for cohesins in sister chromatid cohe-sion, formation of axial elements, and recombination during yeast meiosis. Cell 98: 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Klein F, et al. (1992). Localization of Rap1 and topoisomerase II in nuclei and chromosomes of yeast. J Cell Biol 117: 935–948.

    Article  PubMed  CAS  Google Scholar 

  • Kohli J, Bahler J (1994). Homologous recombination in fission yeast: absence of crossover interference and synaptonemal complex. Experientia 50: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Kussel P, Frasch M (1995). Yeast Srp1, a nuclear protein related to Drosophila and mouse pendulin, is required for normal migration, division, and integrity of nuclei during mitosis. Mol Gen Genet 248: 351–363.

    Article  PubMed  CAS  Google Scholar 

  • Lammers JH, Offenberg HH, van Aalderen M, et al. (1994). The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 14: 1, 137–1, 146.

    Google Scholar 

  • Lee JY, Orr-Weaver TL (2001). The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17: 753–777.

    Article  PubMed  CAS  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000). Identification of human Rap1: implications for telomere evolution. Cell 101: 471–483.

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Boyle AL, Cremer T, Ward DC (1991). Analysis of genes and chromosomes by non-isotopic in situ hybridization. Genet Anal Tech Appl 8: 24–35.

    Article  PubMed  CAS  Google Scholar 

  • Lim DS, Kim ST, Xu B, et al. (2000). ATM phosphorylates p95/Nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Loidl J (1990). The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778.

    Article  PubMed  CAS  Google Scholar 

  • Lombard DB, Guarente L (2000). Nijmegen breakage syndrome disease protein and MRE1 1 at PML nuclear bodies and meiotic telomeres. Cancer Res 60: 2, 331–2, 334.

    Google Scholar 

  • Longtine MS, Wilson NM, Petracek ME, Berman J (1989). A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr Genet 16: 225–239.

    Article  PubMed  CAS  Google Scholar 

  • Luca FC, Mody M, Kurischko C, et al. (2001). Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit. Mol Cell Biol 21: 6, 972–6, 983.

    Google Scholar 

  • Maddar H, Ratzkovsky N, Krauskopf A (2001). Role for telomere cap structure in meiosis. Mol Biol Cell 12: 3, 191–3, 203.

    Google Scholar 

  • Mahadevaiah SK, et al. (2001). Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF, et al. (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Moore G (2001). The Ph1 locus is needed to ensure specific somatic and meiotic centromere association Nature 411: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G (1999). Homologous chromosome pairing in wheat. J Cell Sci 112: 1, 761–1, 769.

    Google Scholar 

  • Masson JY, West SC (2001). The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem Sci 26: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000). Telomeres and their control. Annu Rev Genet 34: 331–358.

    Article  PubMed  CAS  Google Scholar 

  • McKim KS, Green-Marroquin BL, Sekelsky JJ, et al. (1998). Meiotic synapsis in the absence of recombination. Science 279: 876–878.

    Article  PubMed  CAS  Google Scholar 

  • MacQueen AJ, Villeneuve AM (2001). Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev 15: 1, 674–1, 687.

    Google Scholar 

  • McLaren A (1983). Primordial germ cells in mice. Bibliotheca Anat 24: 59–66.

    CAS  Google Scholar 

  • Megee PC, Mistrot C, Guacci V, Koshland D (1999). The centromeric sister chromatid cohe-sion site directs Mcd1p binding to adjacent sequences. Mol Cell 4: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Meluh PB, Rose MD (1990). KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60: 1, 029–1, 041.

    Google Scholar 

  • Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C (1992). A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11: 5, 091–5, 100.

    Google Scholar 

  • Mikhailova EI, Sosnikhina SP, Kirillova GA, et al. (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). J Cell Sci 114:1, 875–1, 882.

    Google Scholar 

  • Moens PB, Pearlman RE (1990). Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes. Chromosoma 100: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE, Heng HH, Traut W (1998). Chromosome cores and chromatin at meiotic prophase. Curr Top Dev Biol 37: 241–262.

    Article  PubMed  CAS  Google Scholar 

  • Monesi V (1962). Autoradiographic study of DNA synthesis and the cell cycle in spermatogo-nia and spermatocytes of the mouse testis using tritiated thymidine. J Cell Biol 14: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Moore JES (1895). On the structural changes in the reproductive cells in the spermatogenesis of Elasmobranchs. Quart J of Micros Sci 38: 275–313.

    Google Scholar 

  • Moses MJ (1956). Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol 2: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Naito T, Matsuura A, Ishikawa F (1998). Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 20: 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Zhou XZ, Kishi S, Kosugi I, Tsutsui Y, Lu KP (2001). A specific interaction between the telomeric protein Pin2/TRF1 and the mitotic spindle. Curr Biol 11: 1, 512–1, 516.

    Google Scholar 

  • Nasmyth K (2001). Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35: 673–745.

    Article  PubMed  CAS  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998). Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392: 825–828.

    CAS  Google Scholar 

  • Niwa O, Shimanuki M, Miki F (2000). Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J 19: 3, 831–3, 840.

    Google Scholar 

  • Pâques F, Haber JE (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.

    Google Scholar 

  • Pandita TK, Westphal CH, Anger M, et al. (1999). Atm inactivation results in aberrant telomere clustering during meiotic prophase. Mol Cell Biol 19: 5, 096–5, 105.

    Google Scholar 

  • Parisi S, McKay MJ, Molnar M, et al. (1999). Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19: 3, 515–3, 528.

    Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, et al. (2001). A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15: 1, 349–1, 360.

    Google Scholar 

  • Paweletz N (2001). Walther Flemming: a pioneer of mitosis research. Nat Rev Mol Cell Biol 2: 72–75.

    Article  PubMed  CAS  Google Scholar 

  • Pelttari J, Hoja MR, Yuan L, et al. (2001). A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21: 5, 667–5, 677.

    Google Scholar 

  • Peters AHM, O’Carroll D, Scherthan H, et al. (2001). Loss of the suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Article  PubMed  CAS  Google Scholar 

  • Pezzi N, Prieto I, Kremer L, et al. (2000). STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams–Beuren syndrome deletion. FASEB J 14: 581–592.

    PubMed  CAS  Google Scholar 

  • Pfeifer C, Thomsen PD, Scherthan H (2001). Centromere and telomere redistribution precedes homologue pairing and terminal synapsis initiation during prophase I of cattle spermatogenesis. Cytogenet Cell Genet 93: 304–314.

    Article  PubMed  CAS  Google Scholar 

  • Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T (1998). Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci 111: 413–423.

    PubMed  CAS  Google Scholar 

  • Podgornaya OI, et al. (2000). Nuclear envelope associated protein that binds telomeric DNAs. Mol Reprod Dev 57: 16–25.

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Suja JA, Pezzi N, et al. (2001). Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Primig M, Williams RM, Winzeler EA, et al. (2000). The core meiotic transcriptome in budding yeasts. Nat Genet 26: 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Toth A, Galova M, et al. (2001). A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11: 1, 001–1, 009.

    Google Scholar 

  • Rasmussen SW (1977). Meiosis in Bombyx mori females. Philos Trans R Soc Lond B Biol Sci 277: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie KB, Mallory JC, Petes TD (1999). Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol 19: 6,065–6, 075.

    Google Scholar 

  • Rockmill B, Roeder GS (1998). Telomere-mediated chromosome pairing during meiosis in budding yeast. Genes Dev 12: 2574–2586.

    Article  PubMed  CAS  Google Scholar 

  • Roeder S (1997). Meiosis: it takes two to tango. Genes Dev 11: 2, 600–2, 621.

    Google Scholar 

  • Roeder GS, Bailis JM (2000). The pachytene checkpoint. Trends Genet 16: 395–403. San-Segundo PA, Roeder GS (2000). Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell 11: 3,601–3, 615.

    Google Scholar 

  • Scherthan H (2001). A bouquet makes ends meet. Nat Rev Mol Cell Biol 2: 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Jerratsch M, Dhar S, et al. (2000a) Meiotic telomere distribution and Sertoli cell nuclear architecture are altered in Atm-and Atm-p53-deficient mice. Mol Cell Biol 20: 7, 773–7, 783.

    Google Scholar 

  • Scherthan H, Jerratsch M, Li B, et al. (2000b). Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11: 4, 189–4, 203.

    Google Scholar 

  • Scherthan H, Eils R, Trelles-Sticken E, et al. (1998). Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase. J Cell Sci 111: 2, 337–2, 351.

    Google Scholar 

  • Scherthan H, et al. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134: 1, 109–1, 125.

    Google Scholar 

  • Scherthan H, Loidl J, Schuster T, Schweizer D (1992). Meiotic chromosome condensation and pair-ing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma 101: 590–595.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner A, Schreiner KE (1905). Über die Entwickelung der männlichen Geschlechtszellen von Myxine glutinosa (L). II. Die Centriolen und ihre Vermehrungsweise. Arch d Biol 21: 315–353.

    Google Scholar 

  • Schwacha A, Kleckner N (1997). Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90: 1, 123–1, 135.

    Google Scholar 

  • Schwarzacher T (1997). Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis. Sexual Plant Reprod 10: 324–331.

    Article  CAS  Google Scholar 

  • Selig S, Okumura K, Ward DC, Cedar H (1992). Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 11: 1, 217–1, 225.

    Google Scholar 

  • Sharon G, Simchen G (1990). Centromeric regions control autonomous segregation tendencies in single-division meiosis of Saccharomyces cerevisiae. Genetics 125: 487–494.

    CAS  Google Scholar 

  • Shimanuki M, et al. (1997). A novel fission yeast gene, kms1 +, is required for the formation of meiotic prophase-specific nuclear architecture. Mol Gen Genet 254: 238–249.

    Article  PubMed  CAS  Google Scholar 

  • Shore D (2001). Telomeric chromatin: replicating and wrapping up chromosome ends. Curr Opin Genet Dev 11: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Shore D, Nasmyth K (1987). Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51: 721–732.

    Article  PubMed  CAS  Google Scholar 

  • Simchen G, Kassir Y, Horesh-Cabilly O, Friedmann A (1981). Elevated recombination and pairing structures during meiotic arrest in yeast of the nuclear division mutant cdc5. Mol Gen Genet 184: 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Smith KN, Nicolas A (1998). Recombination at work for meiosis. Curr Opin Genet Dev 8: 200–211.

    Article  PubMed  CAS  Google Scholar 

  • Smith AV, Roeder GS (1997). The yeast Red1 protein localizes to the cores of meiotic chromosomes. J Cell Biol 136: 957–967.

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2: 672–676

    Article  PubMed  CAS  Google Scholar 

  • Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS (2000). Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol 20: 286–298.

    Article  PubMed  CAS  Google Scholar 

  • Stack SM, Anderson LK (2001). A model for chromosome structure during the mitotic and meiotic cell cycles. Chromosome Res 9: 175–198.

    Article  PubMed  CAS  Google Scholar 

  • Strambio-de-Castillia C, Blobel G, Rout MP (1999). Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144: 839–855.

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Jessberger R (1999). Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem 263: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DS, Biggins S, Rose MD (1998). The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol 143: 751–765.

    Article  PubMed  CAS  Google Scholar 

  • Sutton WS (1903). The chromosomes in heredity. Biol Bull 4: 231–251.

    Article  Google Scholar 

  • Sym M, Engebrecht J, Roeder GS (1993). ZIP1 is a synaptonemal complex protein reqired for meiotic chromosome synapsis. Cell 72: 365–378.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Cosma MP, Wirth K, Nasmyth K (1999). Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98: 847–858.

    Article  PubMed  CAS  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999). RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147: 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995). Localization of RecA-like recom-bination proteins on chromosomes of the lily at various meiotic stages. Genes Dev 9: 925–934.

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ (1991). Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet 7: 149–154.

    PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Dresser ME, Scherthan H (2000). Meiotic telomere protein Ndj 1p is required for meiosis specific telomere distribution and bouquet formation in budding yeast. J Cell Biol 151: 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (1999). Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112: 651–658.

    PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, et al. (2000). A comprehensive analysis of protein–protein interac-tions in Saccharomyces cerevisiae. Nature 403: 623–627.

    CAS  Google Scholar 

  • van Heemst D, Heyting C (2000). Sister chromatid cohesion and recombination in meiosis. Chromosoma 109: 10–26.

    Article  PubMed  Google Scholar 

  • Villeneuve AM, Hillers KJ (2001). Whence meiosis? Cell 106: 647–650.

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984). The synaptonemal complex in genetic segregation. Annu Rev Genetics 18: 331–413.

    Article  Google Scholar 

  • von Winniwarter H (1900). Rechereches sur l’ovogenèse et l’organogenèse de l’ovaire des Mammifères (lapin et homme). Arch Biol 17: 33–199.

    Google Scholar 

  • Walker MY, Hawley RS (2000). Hanging on to your homolog: the roles of pairing, synapsis and recombination in the maintenance of homolog adhesion. Chromosoma 109: 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke HJ (1997). Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation. Chromosoma 106: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999). Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Weiner BM, Kleckner N (1994). Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77: 977–991.

    Article  PubMed  CAS  Google Scholar 

  • Weismann A (1887). Über die Zahl der Richtungskörper und über ihre Bedeutung für die Vererbung. Jena: Gustav Fischer.

    Google Scholar 

  • Wilson EB (1925). The Cell in Heredity and Development, 3rd edn. New York: MacMillan. Yamamoto A, Hiraoka Y (2001). How do meiotic chromosomes meet their homologous partners?: lessons from fission yeast. Bioessays 23: 526–533.

    Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999). A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145: 1, 233–1, 249.

    Google Scholar 

  • Yano R, Oakes ML, Tabb MM, Nomura M (1994). Yeast Srp1p has homology to armadillo/ plakoglobin/beta-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure. Proc Natl Acad Sci USA 91: 6, 880–6, 884.

    Google Scholar 

  • Yuan L, Liu JG, Zhao J, et al. (2000). The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5: 73–83

    Article  PubMed  CAS  Google Scholar 

  • Zetka MC, Kawasaki I, Strome S, Muller F (1999). Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13: 2, 258–2, 270.

    Google Scholar 

  • Zhu XD, Kuster B, Mann M, Petrini JH, Lange T (2000). Cell-cycle-regulated association of RAD50/MRE1 1/NBS 1 with TRF2 and human telomeres. Nat Genet 25: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1998). The leptotene-zygotene transition of meiosis. Annu Rev Genet 32: 619–697.

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999). Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33: 603–754.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scherthan, H. (2004). Interphase Cytogenetics in Understanding Chromosome and Telomere Dynamics During Prophase I: Implications for Meiotic Telomere Movements. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics