Chemical Analysis of Amyloid β Protein in CAA

  • Alex E. Roher
  • Yu-Min Kuo
  • Alexander A. Roher
  • Mark R. Emmerling
  • Warren J. Goux


Substantial evidence demonstrates that amyloid deposition in the cerebral vasculature plays a major role in the pathophysiology of Alzheimer’s disease. Chemical and immunohistochemical analyses have demonstrated that Aβ40 and Aβ42 peptides are present in vascular amyloid deposits with a preponderance of the former peptide. The accumulation of cerebrovascular amyloid leads to obliteration of capillary lumen and destruction arterial myocytes resulting in hypoperfusion and loss of control of cerebral blood flow. Post-translational modifications such as racemization, isomerization, cyclization, oxidation and N-terminal degradation largely contribute to the insolubility and proteolytic resistance exhibited by vascular Aβ filaments. The strong association of vascular Aβ with other proteins, carbohydrates and lipids results in additional amyloid stability. There appears to be a strong positive correlation between the magnitude of Aβ40 deposition and the dosage of apolipoprotein E4.


Cerebral Amyloid Angiopathy Inclusion Body Myositis Neuritic Plaque Alzheimer Disease Patient Alzheimer Disease Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weller, R.O., Massey, A., Newman, T.A., Hutchings, M., Kuo, Y.M., and Roher, A.E. (1998) Cerebral amyloid angiopathy: amyloid ß accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease, Am.J.Pathol. 153, 725–733.PubMedCrossRefGoogle Scholar
  2. 2.
    Selkoe, D.J. (1994) Normal and abnormal biology of the fl-amyloid precursor protein, Annu. Rev. Neurosci. 17, 489–517.PubMedCrossRefGoogle Scholar
  3. 3.
    Wisniewski, H.M., Wegiel, J., Wang, K.C., and Lach, B. (1992) Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease, Acta Neuropathol.(Berl.) 84, 117–127.CrossRefGoogle Scholar
  4. 4.
    Roher, A.E., Lowenson, J.D., Clarke, S., Woods, A.S., Cotter, R.J., Gowing, E., and Ball, M.J. (1993a) β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease, Proc. Natl. Acad. Sci. U.S.A. 90, 10836–10840.Google Scholar
  5. 5.
    Scholz, W. (1938) Studien zur Pathologic der Hirngefässe. II. Die drusige Entartung der Hirnarterien and Capillaren, Zeitschrift fair die gesamte Neurologie and Psychiatrie 162, 694–715.CrossRefGoogle Scholar
  6. 6.
    Esiri, M.M. (1987) Cerebral congophilic angiopathy, in R.A. Griffiths and S.T. McCarthy (eds.), Degenerative Neurological Disease in the Elderly, Bristol, Wright, 79–87.Google Scholar
  7. 7.
    Premkumar, D.R., Cohen, D.L., Hedera, P., Friedland, R.P., and Kalaria, R.N. (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease, Am. J. Pathol. 148, 2083–2095.PubMedGoogle Scholar
  8. 8.
    Glenner, G.G. and Wong, C.W. (1984b) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120, 885–890.PubMedCrossRefGoogle Scholar
  9. 9.
    Glenner, G.G. and Wong, C.W. (1984a) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun. 122, 1131–1135.PubMedCrossRefGoogle Scholar
  10. 10.
    Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. U.S.A. 82, 4245–4249.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller, D.L., Papayannopoulos, I.A., Styles, J., Bobin, S.A., Lin, Y.Y., Biemann, K., and Iqbal, K. (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease, Arch. Biochem. Biophys. 301, 41–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Mori, H., Takio, K., Ogawara, M., and Selkoe, D.J. (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease, J. Biol. Chem. 267, 17082–17086.PubMedGoogle Scholar
  13. 13.
    Roher, A.E., Lowenson, J.D., Clarke, S., Wolkow, C., Wang, R., Cotter, R.J., Reardon, I.M., Zurcher-Neely, H.A., Heinrikson, R.L., and Ball, M.J. (1993b) Structural alterations in the peptide backbone of fl-amyloid core protein may account for its deposition and stability in Alzheimer’s disease, J. Biol. Chem. 268, 3072–3083.PubMedGoogle Scholar
  14. 14.
    Fukumoto, H., Asami-Odaka, A., Suzuki, N., Shimada, H., Ihara, Y., and Iwatsubo, T. (1996) Amyloid β protein deposition in normal aging has the same characteristics as that in Alzheimer’s disease. Predominance of A1342(43) and association of Aβ 40 with cored plaques, Am. J. Pathol. 148, 259–265.PubMedGoogle Scholar
  15. 15.
    Mann, D.M., Iwatsubo, T., Ihara, Y., Cairns, N.J., Lantos, P.L., Bogdanovic, N., Lannfelt, L., Winblad, B., Maat-Schieman, M.L., and Rossor, M.N. (1996) Predominant deposition of amyloid-I3 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene, Am. J. Pathol. 148, 1257–1266.PubMedGoogle Scholar
  16. 16.
    Mak, K., Yang, F., Vinters, H.V., Frautschy, S.A., and Cole, G.M. (1994) Polyclonals to 13-amyloid(1–42) identify most plaque and vascular deposits in Alzheimer cortex, but not striatum, Brain Res. 667, 138–142.PubMedCrossRefGoogle Scholar
  17. 17.
    Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. (1994) Visualization of A3 42(43) and A 3 40 in senile plaques with end-specific A3 monoclonals: evidence that an initially deposited species is Aß 42(43), Neuron 13, 45–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Wisniewski, H.M., Frackowiak, J., and Mazur-Kolecka, B. (1995) In vitro production of 3-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels, Neurosci. Lett. 183, 120–123.Google Scholar
  19. 19.
    Alonzo, N.C., Hyman, B.T., Rebeck, G.W., and Greenberg, S.M. (1998) Progression of cerebral amyloid angiopathy: accumulation of amyloid-340 in affected vessels, J. Neuropathol. Exp. Neurol. 57, 353–359.Google Scholar
  20. 20.
    Jarrett, J.T., Berger, E.P., and Lansbury, P.T.J. (1993) The C-terminus of the ß protein is critical in amyloidogenesis, Ann. N.Y. Acad. Sci. 695, 144–148.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuo, Y.M., Webster, S., Emmerling, M.R., De Lima, N., and Roher, A.E. (1998) Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of Aß peptides of Alzheimer’s disease, Biochim. Biophys. Acta 1406, 291–298.PubMedCrossRefGoogle Scholar
  22. 22.
    Ishii, K., Tamaoka, A., Mizusawa, H., Shoji, S., Ohtake, T., Fraser, P.E., Takahashi, H., Tsuji, S., Gearing, M., Mizutani, T., Yamada, S., Kato, M., St.George-Hyslop, P.H., Mina, S.S., and Mori, H. (1997) Aβ140 but not A31–42 levels in cortex correlate with apolipoprotein E epsilon4 allele dosage in sporadic Alzheimer’s disease, Brain Res. 748, 250–252.PubMedCrossRefGoogle Scholar
  23. 23.
    Gearing, M., Mori, H., and Mina, S.S. (1996) A13-peptide length and apolipoprotein E genotype in Alzheimer’s disease, Ann. Neurol. 39, 395–399.Google Scholar
  24. 24.
    Roher, A., Gray, E.G., and Paula-Barbosa, M. (1988) Alzheimer’s disease: coated vesicles, coated pits and the amyloid-related cell, Proc. R. Soc. Lond. B. Biol. Sci. 232, 367–373.PubMedCrossRefGoogle Scholar
  25. 25.
    Miyakawa, T., Shimoji, A., Kuramoto, R., and Higuchi, Y. (1982) The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia. Morphological mechanism of senile plaque production, Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 40, 121–129.PubMedCrossRefGoogle Scholar
  26. 26.
    Goux, W.J., Rodriguez, S., and Sparkman, D.R. (1995) Analysis of the core components of Alzheimer paired helical filaments. A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases, FEBS Lett. 366, 81–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Goux, W.J., Rodriguez, S., and Sparkman, D.R. (1996) Characterization of the glycolipid associated with Alzheimer paired helical filaments, J. Neurochem. 67, 723–733.PubMedCrossRefGoogle Scholar
  28. 28.
    Sparkman, D.R., Goux, W.J., Jones, C.M., White, C.L., and Hill, S.J. (1991) Alzheimer disease paired helical filament core structures contain glycolipid, Biochem. Biophys. Res. Commun. 181, 771–779.Google Scholar
  29. 29.
    Folch, J., Lees, M., and Stanley, G.H.S. (1956) A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226, 497–509.Google Scholar
  30. 30.
    Choo-Smith, L.P., Garzon-Rodriguez, W., Glabe, C.G., and Surewicz, W.K. (1997) Acceleration of amyloid fibril formation by specific binding of A13-(140) peptide to ganglioside-containing membrane vesicles, J Biol. Chem. 272, 22987–22990.PubMedCrossRefGoogle Scholar
  31. 31.
    McLaurin, J. and Chakrabartty, A. (1997) Characterization of the interactions of Alzheimer 3-amyloid peptides with phospholipid membranes, Eur. J. Biochem. 245, 355–363.PubMedCrossRefGoogle Scholar
  32. 32.
    Yanagisawa, K. and Ihara, Y. (1998) GM1 ganglioside-bound amyloid 3-protein in Alzheimer’s disease brain, Neurobiol. Aging 19, S65 - S67PubMedCrossRefGoogle Scholar
  33. 33.
    Choo-Smith, L.P. and Surewicz, W.K. (1997) The interaction between Alzheimer amyloid 3 (1–40) peptide and ganglioside GM1-containing membranes, FEBS Lett. 402, 95–98.PubMedCrossRefGoogle Scholar
  34. 34.
    McLaurin, J., Franklin, T., Fraser, P.E., and Chakrabartty, A. (1998) Structural transitions associated with the interaction of Alzheimer I3-amyloid peptides with gangliosides, J. Biol. Chem. 273, 4506–4515.PubMedCrossRefGoogle Scholar
  35. 35.
    Saido, T.C., Iwatsubo, T., Mann, D.M., Shimada, H., Ihara, Y., and Kawashima, S. (1995) Dominant and differential deposition of distinct 3-amyloid peptide species, A3 N3 (pE), in senile plaques, Neuron 14, 457–466.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuo, Y.M., Emmerling, M.R., Woods, A.S., Cotter, R.J., and Roher, A.E. (1997) Isolation, chemical characterization, and quantitation of A 3 3- pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits, Biochem. Biophys. Res. Commun. 237, 188–191.PubMedCrossRefGoogle Scholar
  37. 37.
    Gouras, G.K., Xu, H., Jovanovic, J.N., Buxbaum, J.D., Wang, R., Greengard, P., Relkin, N.R., and Gandy, S. (1998) Generation and regulation of (3-amyloid peptide variants by neurons, J. Neurochem. 71, 1920–1925.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, R., Sweeney, D., Gandy, S.E., and Sisodia, S.S. (1996) The profile of soluble amyloid ß protein in cultured cell media. Detection and quantification of amyloid 3 protein and variants by immunoprecipitation-mass spectrometry, J. Biol. Chem. 271, 31894–31902.PubMedCrossRefGoogle Scholar
  39. 39.
    Shinkai, Y., Yoshimura, M., Ito, Y., Odaka, A., Suzuki, N., Yanagisawa, K., and Ihara, Y. (1995) Amyloid 13-proteins 1–40 and 1–42(43) in the soluble fraction of extra-and intracranial blood vessels, Ann. Neurol. 38, 421–428.PubMedCrossRefGoogle Scholar
  40. 40.
    Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S., Cotter, R.J., Tuohy, J.M., Krafft, G.A., Bonnell, B.S., and Emmerling, M.R. (1996) Morphology and toxicity of A13-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease, J. Biol. Chem. 271, 20631–20635.PubMedCrossRefGoogle Scholar
  41. 41.
    Davis-Salinas, J., Saporito-Irwin, S.M., Cotman, C.W., and Van Nostrand, W.E. (1995) Amyloid E3-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells, J. Neurochem. 65, 931–934.PubMedCrossRefGoogle Scholar
  42. 42.
    Wisniewski, H.M. and Wegiel, J. (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels, Acta Neuropathol.(Berl.) 87, 233–241.CrossRefGoogle Scholar
  43. 43.
    Kalaria, R.N., Premkumar, D.R., Pax, A.B., Cohen, D.L., and Lieberburg, I. (1996) Production and increased detection of amyloid 13 protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer’s disease, Brain Res. Mol. Brain Res. 35, 58–68.PubMedCrossRefGoogle Scholar
  44. 44.
    Selkoe, D.J. (1989) Molecular pathology of amyloidogenic proteins and the role of vascular amyloidosis in Alzheimer’s disease, Neurobiol. Aging 10, 387–395.PubMedCrossRefGoogle Scholar
  45. 45.
    Kuo, Y.M., Emmerling, M.R., Lampert, H.C., Hempelman, S.R., Kokjohn, T.A., Woods, A.S., Cotter, R.J., and Roher, A.E. (1999) High levels of circulating Aß42 are sequestered by plasma proteins in Alzheimer disease, Biochem. Biophys. Res. Commun. 257, 787–791.PubMedCrossRefGoogle Scholar
  46. 46.
    Saito, Y., Buciak, J., Yang, J., and Pardridge, W.M. (1995) Vector-mediated delivery of 125I-labeled (3-amyloid peptide AR 1.40 through the blood-brain barrier and binding to Alzheimer disease amyloid of the Aß 1.40/vector complex, Proc. Natl. Acad. Sci. U.S.A. 92, 10227–10231.PubMedCrossRefGoogle Scholar
  47. 47.
    Mackic, J.B., Stins, M., McComb, J.G., Calero, M., Ghiso, J., Kim, K.S., Yan, S.D., Stern, D., Schmidt, A.M., Frangione, B., and Zlokovic, B.V. (1998) Human blood-brain barrier receptors for Alzheimer’s amyloid-(3 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer, J. Clin. Invest. 102, 734–743.Google Scholar
  48. 48.
    Zlokovic, B.V., Martel, C.L., Matsubara, E., McComb, J.G., Zheng, G., McCluskey, R.T., Frangione, B., and Ghiso, J. (1996) Glycoprotein 330/megalin: probable role in receptormediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid ß at the blood-brain and blood-cerebrospinal fluid barriers, Proc. Natl. Acad. Sci. U.S.A. 93, 4229–4234.Google Scholar
  49. 49.
    Wisniewski, T. and Frangione, B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, Neurosci. Lett. 135, 235–238.PubMedCrossRefGoogle Scholar
  50. 50.
    Kida, S., Weller, R.O., Zhang, E.T., Phillips, M.J., and Iannotti, F. (1995) Anatomical pathways for lymphatic drainage of the brain and their pathological significance, Neuropathol. Appl. Neurobiol. 21, 181–184.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, E.T., Inman, C.B., and Weller, R.O. (1990) Interrelationships of the pia mater and the perivascular (Virchow- Robin) spaces in the human cerebrum, J. Anat. 170: 111–23, 111–123.Google Scholar
  52. 52.
    Ichimura, T., Fraser, P.A., and Cserr, H.F. (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain, Brain Res. 545, 103–113.PubMedCrossRefGoogle Scholar
  53. 53.
    Iwatsubo, T., Mann, D.M., Odaka, A., Suzuki, N., and Ihara, Y. (1995) Amyloid 13 protein (A13) deposition: Aß 42(43) precedes Aß 40 in Down syndrome, Ann. Neurol. 37, 294–299.PubMedCrossRefGoogle Scholar
  54. 54.
    Castillo, G.M., Ngo, C., Cummings, J., Wight, T.N., and Snow, A.D. (1997) Perlecan binds to the 0-amyloid proteins (Aß) of Alzheimer’s disease, accelerates All fibril formation, and maintains All fibril stability. J. Neurochem. 69, 2452–2465.PubMedCrossRefGoogle Scholar
  55. 55.
    Snow, A.D., Kinsella, M.G., Parks, E., Sekiguchi, R.T., Miller, J.D., Kimata, K., and Wight, T.N. (1995) Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the 0-amyloid protein of Alzheimer’s disease, Arch. Biochem. Biophys. 320, 84–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Li, Q.X., Whyte, S., Tanner, J.E., Evin, G., Beyreuther, K., and Masters, C.L. (1998) Secretion of Alzheimer’s disease Al amyloid peptide by activated human platelets, Lab. Invest. 78, 461–469.PubMedGoogle Scholar
  57. 57.
    Chen, M., Inestrosa, N.C., Ross, G.S., and Fernandez, H.L. (1995) Platelets are the primary source of amyloid 0-peptide in human blood, Biochem. Biophys. Res. Commun. 213, 96–103.PubMedCrossRefGoogle Scholar
  58. 58.
    Nordstedt, C., Naslund, J., Thyberg, J., Messamore, E., Gandy, S.E., and Terenius, L. (1994) Human neutrophil phagocytic granules contain a truncated soluble form of the Alzheimer 0/A4 amyloid precursor protein (APP), J. Biol. Chem. 269, 9805–9810.PubMedGoogle Scholar
  59. 59.
    Sarkozi, E., Askanas, V., Johnson, S.A., Engel, W.K., and Alvarez, R.B. (1993) β-Amyloid precursor protein mRNA is increased in inclusion-body myositis muscle, Neuroreport. 4, 815–818.Google Scholar
  60. 60.
    Askanas, V., Alvarez, R.B., and Engel, W.K. (1993)13-Amyloid precursor epitopes in muscle fibers of inclusion body myositis, Ann. Neurol. 34, 551–560.Google Scholar
  61. 61.
    Golde, T.E., Estus, S., Usiak, M., Younkin, L.H., and Younkin, S.G. (1990) Expression of ß amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR, Neuron 4, 253–267.PubMedCrossRefGoogle Scholar
  62. 62.
    Funato, H., Yoshimura, M., Kusui, K., Tamaoka, A., Ishikawa, K., Ohkoshi, N., Namekata, K., Okeda, R., and Ihara, Y. (1998) Quantitation of amyloid 0-protein (Al) in the cortex during aging and in Alzheimer’s disease, Am. J. Pathol. 152, 1633–1640.PubMedGoogle Scholar
  63. 63.
    Yamada, M., Itoh, Y., Shintaku, M., Kawamura, J., Jensson, O., Thorsteinsson, L., Suematsu, N., Matsushita, M., and Otomo, E. (1996) Immune reactions associated with cerebral amyloid angiopathy, Stroke 27, 1155–1162.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson, D.M. and Binder, L.I. (1997) Free fatty acids stimulate the polymerization of tau and amyloid ß peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease, Am. J. Pathol. 150, 2181–2195.PubMedGoogle Scholar
  65. 65.
    Zweig, R.M., Ross, C.A., Hedreen, J.C., Steele, C., Cardillo, J.E., Whitehouse, P.J., Folstein, M.F., and Price, D.L. (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease, Ann. Neurol. 24, 233–242.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilcock, G.K., Esiri, M.M., Bowen, D.M., and Hughes, A.O. (1988) The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type, J. Neurol. Neurosurg. Psychiatry 51, 842–849.PubMedCrossRefGoogle Scholar
  67. 67.
    Sato, A. and Sato, Y. (1992) Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain, Neurosci. Res. 14, 242–274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Alex E. Roher
    • 1
  • Yu-Min Kuo
    • 1
  • Alexander A. Roher
    • 1
  • Mark R. Emmerling
    • 2
  • Warren J. Goux
    • 3
  1. 1.Haldeman Laboratory for Alzheimer Disease ResearchSun Health Research InstituteSun CityUSA
  2. 2.Department of Neuroscience and Therapeutics, Parke-Davis Pharmaceutical ResearchDivision of Warner-Lambert CompanyAnn ArborUSA
  3. 3.Department of ChemistryUniversity of Texas at DallasRichardsonUSA

Personalised recommendations