Skip to main content

Chemical Analysis of Amyloid β Protein in CAA

  • Chapter
  • 163 Accesses

Abstract

Substantial evidence demonstrates that amyloid deposition in the cerebral vasculature plays a major role in the pathophysiology of Alzheimer’s disease. Chemical and immunohistochemical analyses have demonstrated that Aβ40 and Aβ42 peptides are present in vascular amyloid deposits with a preponderance of the former peptide. The accumulation of cerebrovascular amyloid leads to obliteration of capillary lumen and destruction arterial myocytes resulting in hypoperfusion and loss of control of cerebral blood flow. Post-translational modifications such as racemization, isomerization, cyclization, oxidation and N-terminal degradation largely contribute to the insolubility and proteolytic resistance exhibited by vascular Aβ filaments. The strong association of vascular Aβ with other proteins, carbohydrates and lipids results in additional amyloid stability. There appears to be a strong positive correlation between the magnitude of Aβ40 deposition and the dosage of apolipoprotein E4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weller, R.O., Massey, A., Newman, T.A., Hutchings, M., Kuo, Y.M., and Roher, A.E. (1998) Cerebral amyloid angiopathy: amyloid ß accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease, Am.J.Pathol. 153, 725–733.

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe, D.J. (1994) Normal and abnormal biology of the fl-amyloid precursor protein, Annu. Rev. Neurosci. 17, 489–517.

    Article  PubMed  CAS  Google Scholar 

  3. Wisniewski, H.M., Wegiel, J., Wang, K.C., and Lach, B. (1992) Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease, Acta Neuropathol.(Berl.) 84, 117–127.

    Article  CAS  Google Scholar 

  4. Roher, A.E., Lowenson, J.D., Clarke, S., Woods, A.S., Cotter, R.J., Gowing, E., and Ball, M.J. (1993a) β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease, Proc. Natl. Acad. Sci. U.S.A. 90, 10836–10840.

    Google Scholar 

  5. Scholz, W. (1938) Studien zur Pathologic der Hirngefässe. II. Die drusige Entartung der Hirnarterien and Capillaren, Zeitschrift fair die gesamte Neurologie and Psychiatrie 162, 694–715.

    Article  Google Scholar 

  6. Esiri, M.M. (1987) Cerebral congophilic angiopathy, in R.A. Griffiths and S.T. McCarthy (eds.), Degenerative Neurological Disease in the Elderly, Bristol, Wright, 79–87.

    Google Scholar 

  7. Premkumar, D.R., Cohen, D.L., Hedera, P., Friedland, R.P., and Kalaria, R.N. (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease, Am. J. Pathol. 148, 2083–2095.

    PubMed  CAS  Google Scholar 

  8. Glenner, G.G. and Wong, C.W. (1984b) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  9. Glenner, G.G. and Wong, C.W. (1984a) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun. 122, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  10. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. U.S.A. 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  11. Miller, D.L., Papayannopoulos, I.A., Styles, J., Bobin, S.A., Lin, Y.Y., Biemann, K., and Iqbal, K. (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease, Arch. Biochem. Biophys. 301, 41–52.

    Article  PubMed  CAS  Google Scholar 

  12. Mori, H., Takio, K., Ogawara, M., and Selkoe, D.J. (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease, J. Biol. Chem. 267, 17082–17086.

    PubMed  CAS  Google Scholar 

  13. Roher, A.E., Lowenson, J.D., Clarke, S., Wolkow, C., Wang, R., Cotter, R.J., Reardon, I.M., Zurcher-Neely, H.A., Heinrikson, R.L., and Ball, M.J. (1993b) Structural alterations in the peptide backbone of fl-amyloid core protein may account for its deposition and stability in Alzheimer’s disease, J. Biol. Chem. 268, 3072–3083.

    PubMed  CAS  Google Scholar 

  14. Fukumoto, H., Asami-Odaka, A., Suzuki, N., Shimada, H., Ihara, Y., and Iwatsubo, T. (1996) Amyloid β protein deposition in normal aging has the same characteristics as that in Alzheimer’s disease. Predominance of A1342(43) and association of Aβ 40 with cored plaques, Am. J. Pathol. 148, 259–265.

    PubMed  CAS  Google Scholar 

  15. Mann, D.M., Iwatsubo, T., Ihara, Y., Cairns, N.J., Lantos, P.L., Bogdanovic, N., Lannfelt, L., Winblad, B., Maat-Schieman, M.L., and Rossor, M.N. (1996) Predominant deposition of amyloid-I3 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene, Am. J. Pathol. 148, 1257–1266.

    PubMed  CAS  Google Scholar 

  16. Mak, K., Yang, F., Vinters, H.V., Frautschy, S.A., and Cole, G.M. (1994) Polyclonals to 13-amyloid(1–42) identify most plaque and vascular deposits in Alzheimer cortex, but not striatum, Brain Res. 667, 138–142.

    Article  PubMed  CAS  Google Scholar 

  17. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. (1994) Visualization of A3 42(43) and A 3 40 in senile plaques with end-specific A3 monoclonals: evidence that an initially deposited species is Aß 42(43), Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  18. Wisniewski, H.M., Frackowiak, J., and Mazur-Kolecka, B. (1995) In vitro production of 3-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels, Neurosci. Lett. 183, 120–123.

    CAS  Google Scholar 

  19. Alonzo, N.C., Hyman, B.T., Rebeck, G.W., and Greenberg, S.M. (1998) Progression of cerebral amyloid angiopathy: accumulation of amyloid-340 in affected vessels, J. Neuropathol. Exp. Neurol. 57, 353–359.

    Google Scholar 

  20. Jarrett, J.T., Berger, E.P., and Lansbury, P.T.J. (1993) The C-terminus of the ß protein is critical in amyloidogenesis, Ann. N.Y. Acad. Sci. 695, 144–148.

    Article  PubMed  CAS  Google Scholar 

  21. Kuo, Y.M., Webster, S., Emmerling, M.R., De Lima, N., and Roher, A.E. (1998) Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of Aß peptides of Alzheimer’s disease, Biochim. Biophys. Acta 1406, 291–298.

    Article  PubMed  CAS  Google Scholar 

  22. Ishii, K., Tamaoka, A., Mizusawa, H., Shoji, S., Ohtake, T., Fraser, P.E., Takahashi, H., Tsuji, S., Gearing, M., Mizutani, T., Yamada, S., Kato, M., St.George-Hyslop, P.H., Mina, S.S., and Mori, H. (1997) Aβ140 but not A31–42 levels in cortex correlate with apolipoprotein E epsilon4 allele dosage in sporadic Alzheimer’s disease, Brain Res. 748, 250–252.

    Article  PubMed  CAS  Google Scholar 

  23. Gearing, M., Mori, H., and Mina, S.S. (1996) A13-peptide length and apolipoprotein E genotype in Alzheimer’s disease, Ann. Neurol. 39, 395–399.

    CAS  Google Scholar 

  24. Roher, A., Gray, E.G., and Paula-Barbosa, M. (1988) Alzheimer’s disease: coated vesicles, coated pits and the amyloid-related cell, Proc. R. Soc. Lond. B. Biol. Sci. 232, 367–373.

    Article  PubMed  CAS  Google Scholar 

  25. Miyakawa, T., Shimoji, A., Kuramoto, R., and Higuchi, Y. (1982) The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia. Morphological mechanism of senile plaque production, Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 40, 121–129.

    Article  PubMed  CAS  Google Scholar 

  26. Goux, W.J., Rodriguez, S., and Sparkman, D.R. (1995) Analysis of the core components of Alzheimer paired helical filaments. A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases, FEBS Lett. 366, 81–85.

    Article  PubMed  CAS  Google Scholar 

  27. Goux, W.J., Rodriguez, S., and Sparkman, D.R. (1996) Characterization of the glycolipid associated with Alzheimer paired helical filaments, J. Neurochem. 67, 723–733.

    Article  PubMed  CAS  Google Scholar 

  28. Sparkman, D.R., Goux, W.J., Jones, C.M., White, C.L., and Hill, S.J. (1991) Alzheimer disease paired helical filament core structures contain glycolipid, Biochem. Biophys. Res. Commun. 181, 771–779.

    Google Scholar 

  29. Folch, J., Lees, M., and Stanley, G.H.S. (1956) A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226, 497–509.

    Google Scholar 

  30. Choo-Smith, L.P., Garzon-Rodriguez, W., Glabe, C.G., and Surewicz, W.K. (1997) Acceleration of amyloid fibril formation by specific binding of A13-(140) peptide to ganglioside-containing membrane vesicles, J Biol. Chem. 272, 22987–22990.

    Article  PubMed  CAS  Google Scholar 

  31. McLaurin, J. and Chakrabartty, A. (1997) Characterization of the interactions of Alzheimer 3-amyloid peptides with phospholipid membranes, Eur. J. Biochem. 245, 355–363.

    Article  PubMed  CAS  Google Scholar 

  32. Yanagisawa, K. and Ihara, Y. (1998) GM1 ganglioside-bound amyloid 3-protein in Alzheimer’s disease brain, Neurobiol. Aging 19, S65 - S67

    Article  PubMed  CAS  Google Scholar 

  33. Choo-Smith, L.P. and Surewicz, W.K. (1997) The interaction between Alzheimer amyloid 3 (1–40) peptide and ganglioside GM1-containing membranes, FEBS Lett. 402, 95–98.

    Article  PubMed  CAS  Google Scholar 

  34. McLaurin, J., Franklin, T., Fraser, P.E., and Chakrabartty, A. (1998) Structural transitions associated with the interaction of Alzheimer I3-amyloid peptides with gangliosides, J. Biol. Chem. 273, 4506–4515.

    Article  PubMed  CAS  Google Scholar 

  35. Saido, T.C., Iwatsubo, T., Mann, D.M., Shimada, H., Ihara, Y., and Kawashima, S. (1995) Dominant and differential deposition of distinct 3-amyloid peptide species, A3 N3 (pE), in senile plaques, Neuron 14, 457–466.

    Article  PubMed  CAS  Google Scholar 

  36. Kuo, Y.M., Emmerling, M.R., Woods, A.S., Cotter, R.J., and Roher, A.E. (1997) Isolation, chemical characterization, and quantitation of A 3 3- pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits, Biochem. Biophys. Res. Commun. 237, 188–191.

    Article  PubMed  CAS  Google Scholar 

  37. Gouras, G.K., Xu, H., Jovanovic, J.N., Buxbaum, J.D., Wang, R., Greengard, P., Relkin, N.R., and Gandy, S. (1998) Generation and regulation of (3-amyloid peptide variants by neurons, J. Neurochem. 71, 1920–1925.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, R., Sweeney, D., Gandy, S.E., and Sisodia, S.S. (1996) The profile of soluble amyloid ß protein in cultured cell media. Detection and quantification of amyloid 3 protein and variants by immunoprecipitation-mass spectrometry, J. Biol. Chem. 271, 31894–31902.

    Article  PubMed  CAS  Google Scholar 

  39. Shinkai, Y., Yoshimura, M., Ito, Y., Odaka, A., Suzuki, N., Yanagisawa, K., and Ihara, Y. (1995) Amyloid 13-proteins 1–40 and 1–42(43) in the soluble fraction of extra-and intracranial blood vessels, Ann. Neurol. 38, 421–428.

    Article  PubMed  CAS  Google Scholar 

  40. Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S., Cotter, R.J., Tuohy, J.M., Krafft, G.A., Bonnell, B.S., and Emmerling, M.R. (1996) Morphology and toxicity of A13-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease, J. Biol. Chem. 271, 20631–20635.

    Article  PubMed  CAS  Google Scholar 

  41. Davis-Salinas, J., Saporito-Irwin, S.M., Cotman, C.W., and Van Nostrand, W.E. (1995) Amyloid E3-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells, J. Neurochem. 65, 931–934.

    Article  PubMed  CAS  Google Scholar 

  42. Wisniewski, H.M. and Wegiel, J. (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels, Acta Neuropathol.(Berl.) 87, 233–241.

    Article  CAS  Google Scholar 

  43. Kalaria, R.N., Premkumar, D.R., Pax, A.B., Cohen, D.L., and Lieberburg, I. (1996) Production and increased detection of amyloid 13 protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer’s disease, Brain Res. Mol. Brain Res. 35, 58–68.

    Article  PubMed  CAS  Google Scholar 

  44. Selkoe, D.J. (1989) Molecular pathology of amyloidogenic proteins and the role of vascular amyloidosis in Alzheimer’s disease, Neurobiol. Aging 10, 387–395.

    Article  PubMed  CAS  Google Scholar 

  45. Kuo, Y.M., Emmerling, M.R., Lampert, H.C., Hempelman, S.R., Kokjohn, T.A., Woods, A.S., Cotter, R.J., and Roher, A.E. (1999) High levels of circulating Aß42 are sequestered by plasma proteins in Alzheimer disease, Biochem. Biophys. Res. Commun. 257, 787–791.

    Article  PubMed  CAS  Google Scholar 

  46. Saito, Y., Buciak, J., Yang, J., and Pardridge, W.M. (1995) Vector-mediated delivery of 125I-labeled (3-amyloid peptide AR 1.40 through the blood-brain barrier and binding to Alzheimer disease amyloid of the Aß 1.40/vector complex, Proc. Natl. Acad. Sci. U.S.A. 92, 10227–10231.

    Article  PubMed  CAS  Google Scholar 

  47. Mackic, J.B., Stins, M., McComb, J.G., Calero, M., Ghiso, J., Kim, K.S., Yan, S.D., Stern, D., Schmidt, A.M., Frangione, B., and Zlokovic, B.V. (1998) Human blood-brain barrier receptors for Alzheimer’s amyloid-(3 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer, J. Clin. Invest. 102, 734–743.

    Google Scholar 

  48. Zlokovic, B.V., Martel, C.L., Matsubara, E., McComb, J.G., Zheng, G., McCluskey, R.T., Frangione, B., and Ghiso, J. (1996) Glycoprotein 330/megalin: probable role in receptormediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid ß at the blood-brain and blood-cerebrospinal fluid barriers, Proc. Natl. Acad. Sci. U.S.A. 93, 4229–4234.

    CAS  Google Scholar 

  49. Wisniewski, T. and Frangione, B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, Neurosci. Lett. 135, 235–238.

    Article  PubMed  CAS  Google Scholar 

  50. Kida, S., Weller, R.O., Zhang, E.T., Phillips, M.J., and Iannotti, F. (1995) Anatomical pathways for lymphatic drainage of the brain and their pathological significance, Neuropathol. Appl. Neurobiol. 21, 181–184.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, E.T., Inman, C.B., and Weller, R.O. (1990) Interrelationships of the pia mater and the perivascular (Virchow- Robin) spaces in the human cerebrum, J. Anat. 170: 111–23, 111–123.

    Google Scholar 

  52. Ichimura, T., Fraser, P.A., and Cserr, H.F. (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain, Brain Res. 545, 103–113.

    Article  PubMed  CAS  Google Scholar 

  53. Iwatsubo, T., Mann, D.M., Odaka, A., Suzuki, N., and Ihara, Y. (1995) Amyloid 13 protein (A13) deposition: Aß 42(43) precedes Aß 40 in Down syndrome, Ann. Neurol. 37, 294–299.

    Article  PubMed  CAS  Google Scholar 

  54. Castillo, G.M., Ngo, C., Cummings, J., Wight, T.N., and Snow, A.D. (1997) Perlecan binds to the 0-amyloid proteins (Aß) of Alzheimer’s disease, accelerates All fibril formation, and maintains All fibril stability. J. Neurochem. 69, 2452–2465.

    Article  PubMed  CAS  Google Scholar 

  55. Snow, A.D., Kinsella, M.G., Parks, E., Sekiguchi, R.T., Miller, J.D., Kimata, K., and Wight, T.N. (1995) Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the 0-amyloid protein of Alzheimer’s disease, Arch. Biochem. Biophys. 320, 84–95.

    Article  PubMed  CAS  Google Scholar 

  56. Li, Q.X., Whyte, S., Tanner, J.E., Evin, G., Beyreuther, K., and Masters, C.L. (1998) Secretion of Alzheimer’s disease Al amyloid peptide by activated human platelets, Lab. Invest. 78, 461–469.

    PubMed  CAS  Google Scholar 

  57. Chen, M., Inestrosa, N.C., Ross, G.S., and Fernandez, H.L. (1995) Platelets are the primary source of amyloid 0-peptide in human blood, Biochem. Biophys. Res. Commun. 213, 96–103.

    Article  PubMed  CAS  Google Scholar 

  58. Nordstedt, C., Naslund, J., Thyberg, J., Messamore, E., Gandy, S.E., and Terenius, L. (1994) Human neutrophil phagocytic granules contain a truncated soluble form of the Alzheimer 0/A4 amyloid precursor protein (APP), J. Biol. Chem. 269, 9805–9810.

    PubMed  CAS  Google Scholar 

  59. Sarkozi, E., Askanas, V., Johnson, S.A., Engel, W.K., and Alvarez, R.B. (1993) β-Amyloid precursor protein mRNA is increased in inclusion-body myositis muscle, Neuroreport. 4, 815–818.

    Google Scholar 

  60. Askanas, V., Alvarez, R.B., and Engel, W.K. (1993)13-Amyloid precursor epitopes in muscle fibers of inclusion body myositis, Ann. Neurol. 34, 551–560.

    Google Scholar 

  61. Golde, T.E., Estus, S., Usiak, M., Younkin, L.H., and Younkin, S.G. (1990) Expression of ß amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR, Neuron 4, 253–267.

    Article  PubMed  CAS  Google Scholar 

  62. Funato, H., Yoshimura, M., Kusui, K., Tamaoka, A., Ishikawa, K., Ohkoshi, N., Namekata, K., Okeda, R., and Ihara, Y. (1998) Quantitation of amyloid 0-protein (Al) in the cortex during aging and in Alzheimer’s disease, Am. J. Pathol. 152, 1633–1640.

    PubMed  CAS  Google Scholar 

  63. Yamada, M., Itoh, Y., Shintaku, M., Kawamura, J., Jensson, O., Thorsteinsson, L., Suematsu, N., Matsushita, M., and Otomo, E. (1996) Immune reactions associated with cerebral amyloid angiopathy, Stroke 27, 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  64. Wilson, D.M. and Binder, L.I. (1997) Free fatty acids stimulate the polymerization of tau and amyloid ß peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease, Am. J. Pathol. 150, 2181–2195.

    PubMed  CAS  Google Scholar 

  65. Zweig, R.M., Ross, C.A., Hedreen, J.C., Steele, C., Cardillo, J.E., Whitehouse, P.J., Folstein, M.F., and Price, D.L. (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease, Ann. Neurol. 24, 233–242.

    Article  PubMed  CAS  Google Scholar 

  66. Wilcock, G.K., Esiri, M.M., Bowen, D.M., and Hughes, A.O. (1988) The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type, J. Neurol. Neurosurg. Psychiatry 51, 842–849.

    Article  PubMed  CAS  Google Scholar 

  67. Sato, A. and Sato, Y. (1992) Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain, Neurosci. Res. 14, 242–274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roher, A.E., Kuo, YM., Roher, A.A., Emmerling, M.R., Goux, W.J. (2000). Chemical Analysis of Amyloid β Protein in CAA. In: Verbeek, M.M., de Waal, R.M.W., Vinters, H.V. (eds) Cerebral Amyloid Angiopathy in Alzheimer’s Disease and Related Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1007-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1007-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5480-7

  • Online ISBN: 978-94-017-1007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics