Advertisement

Cerebral Amyloid Angiopathy in Aged Dogs and Nonhuman Primates

  • Lary C. Walker
Chapter

Abstract

Cerebral amyloid angiopathy (CAA) is a common finding in aged dogs and nonhuman primates. As in humans, cerebrovascular amyloid in these animals is composed fundamentally of the Aβ peptide, along with various associated substances. The amount and distribution of CAA vary among brain regions and among animals of equivalent age. All vessel types can be involved, although amyloidotic venules are relatively rare. In nonhuman primates, capillaries are frequently affected; these small vessels accumulate almost exclusively the 42-amino acid peptide (Aβ42), whereas larger vessels contain a mix of Aβ42 and Aβ40. Compared to aged rhesus monkeys, which usually develop a preponderance of senile plaques, squirrel monkeys manifest mostly CAA. This species-difference is not due to differences in apolipoprotein E type or to known disease-causing polymorphisms in the β-amyloid precursor protein gene; however, squirrel monkeys have an Icelandic-like mutation in the cystatin C gene that could influence the tendency of these monkeys to accrue Aβ in the cerebral vasculature. Aged nonhuman primates and dogs are being used to test cerebral amyloid-targeting strategies and, along with emerging transgenic mice, are beneficial models for validating new diagnostic and therapeutic approaches to CAA.

Keywords

Nonhuman Primate Senile Plaque Squirrel Monkey Cerebral Amyloid Angiopathy Acta Neuropath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Braunmühl, A. V. (1956) “Kongophile Angiopathie” and “senile plaques” bei greisen Hunden. Arch. Psychiatry Z. Neurol. 194, 396–414.Google Scholar
  2. 2.
    Brizzee, K. R., Ordy, J. M., Hofer, H., and Kaack, B. (1978) Animal models for the study of senile brain disease and aging changes in the brain. in R. Katzman, R.D. Terry, and K.L. Bick (eds.), Alzheimer’s Disease: Senile Dementia and Related Disorders, Raven Press, New York, Vol. 7, pp. 515–553.Google Scholar
  3. 3.
    Kisilevsky, R. and Fraser, P.E. (1997) Aß amyloidogenesis: unique, or variation on a systemic theme? Crit. Rev. Biochem. Mol. Biol. 32, 361–404.Google Scholar
  4. 4.
    Johnstone, E. M., Chaney, M. O., Norris, F. H., Pascual, R., and Little, S. P. (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol. Brain Res. 10, 299–305.Google Scholar
  5. 5.
    Levy, E., Amorim, A., Frangione, B., and Walker, L. C. (1995) ß-amyloid precursor protein gene in squirrel monkeys with cerebral amyloid angiopathy. Neurobiol. Aging 16, 805–808.PubMedCrossRefGoogle Scholar
  6. 6.
    Podlisny, M. B., Tolan, D. R., and Selkoe, D. J. (1991) Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer’s disease. Am. J. Pathol. 138, 1423–1435.PubMedGoogle Scholar
  7. 7.
    Selkoe, D. J., Bell, D. S., Podlisny, M. B., Price, D. L., and Cork, L. C. (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235, 183–187.CrossRefGoogle Scholar
  8. 8.
    Bons, N., Jallageas, V., Mestre-Francés, N., Silhol, S., Petter, A., and Delacourte, A. (1995) Microcebus murinus, a convenient laboratory animal model for the study of Alzheimer’s disease. Alzheimer’s Res. 1, 83–87.Google Scholar
  9. 9.
    Bons, N., Mestre, N., and Petter, A. (1991) Senile plaques and neurofibrillary changes in the brain of an aged lemurian primate, Microcebus murinus. Neurobiol. Aging 13, 99–105.CrossRefGoogle Scholar
  10. 10.
    Cork, L. C. and Hester-Price, A. (1993) Aging and amyloid: a phylogenetic perspective. J. Neuropath. Exp. Neurol. 52, 335.CrossRefGoogle Scholar
  11. 11.
    Cork, L. C., Powers, R. E., Selkoe, D. J., Davies, P., Geyer, J. J., and Price, D. L. (1988) Neurofibrillary tangles and senile plaques in aged bears. J. Neuropath. Exp. Neurol. 47, 629–641.Google Scholar
  12. 12.
    Cork, L. C. and Walker, L. C. (1993) Age-related lesions, nervous system. in T.C. Jones, U. Mohr, and R.D. Hunt (eds.) Nonhuman Primates II, Springer-Verlag, New York, pp. 173–183.CrossRefGoogle Scholar
  13. 13.
    Cummings, B. J., Su, J. H., Cotman, C. W., White, R., and Russell, M. J. (1993) ß–amyloid accumulation in aged canine brain: A model of early plaque formation in Alzheimer’s disease. Neurobiol. Aging 14, 547–560.PubMedCrossRefGoogle Scholar
  14. 14.
    Gearing, M., Rebeck, G. W., Hyman, B. T., Tigges, J., and Mirra, S. S. (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc. Natl. Acad. Sci., USA 91, 9382–9386.CrossRefGoogle Scholar
  15. 15.
    Nakamura, S., Tamaoka, A., Sawamura, N., Shoji, S., Nakayama, H., Ono, F., Sakakibara, I., Yoshikawa, Y., Mori, H., Goto, N., and Doi, K. (1995) Carboxyl end-specific monoclonal antibodies to amyloid 3 protein (Aß) subtypes (A1342–43) differentiate Aß in senile plaques and amyloid angiopathy in brains of aged cynomolgus monkeys. Neurosci. Lett. 201, 151–154.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakamura, S., Nakayama, H., Uetsuka, K., Sasaki, N., Uchida, K., and Goto, N. (1995) Senile plaques in an aged two-humped (Bactrian) camel (Camelus bactrianus). Acta Neuropath. 90, 415–418.PubMedCrossRefGoogle Scholar
  17. Roertgen, K. E., Parisi, J. E., Clark, H. B. Barnes, D. L., O’Brien, T. D., and Johnson, K. H. (1996) Aß-Associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol. Aging 17 243–248.Google Scholar
  18. 18.
    Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993) Apolipoprotein E: high-avidity binding to (3amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci., USA 90, 1977–1981.CrossRefGoogle Scholar
  19. 19.
    Tekirian, T. L., Cole, G. M., Russell, M. J., Yang, F., Wekstein, D. R. Patel, E., Snowdon, D. A., Markesbery, W. R., and Geddes, J. W. (1996) Carboxy terminal of 3amyloid deposits in aged human, canine, and polar bear brains. Neurobiol. Aging 17 243248.Google Scholar
  20. 20.
    Uno, H., Alsum, P. B., Dong, S., Richardson, R., Zimbric, M. L., Thieme, C. S., and Houser, W. D. (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol. Aging 17, 275–282.PubMedCrossRefGoogle Scholar
  21. 21.
    Walker, L. C., Kitt, C. A., Struble, R. G., Wagster, M. V., Price, D. L., and Cork, L. C. (1988) The neural basis of memory decline in aged monkeys. Neurobiol. Aging 9, 657666.Google Scholar
  22. 22.
    Walker, L. C., Masters, C., Beyreuther, K., and Price, D. L. (1990) Amyloid in the brains of aged squirrel monkeys. Acta Neuropathol. 80, 381–387.PubMedCrossRefGoogle Scholar
  23. 23.
    Wisniewski, H., Johnson, A. B., Raine, C. S., Kay, W. J., and Terry, R. D. (1970) Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study. Lab. Invest. 23, 287–296.PubMedGoogle Scholar
  24. 24.
    Bruce, M. E., Dickinson, A. G., and Fraser, H. (1976) Cerebral amyloidosis in scrapie in the mouse: effect of agent strain and mouse genotype. Neuropathol. Appl. Neurobiol. 2, 471–478.CrossRefGoogle Scholar
  25. 25.
    Bruce, M. E. and Fraser, H. (1975) Amyloid plaques in the brains of mice infected with scrapie: morphological variation and staining properties. Neuropathol. Appl. Neurobiol. 1, 189–202.CrossRefGoogle Scholar
  26. 26.
    Wisniewski, H. M., Bruce, M. E., and Fraser, H. (1975) Infectious etiology of neuritic (senile) plaques in mice. Science 190, 1108–1110.PubMedCrossRefGoogle Scholar
  27. 27.
    Wisniewski, H. M., Moretz, R. C., and Lossinsky, A. S. (1981) Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Ann. Neurol. 10, 517–522.PubMedCrossRefGoogle Scholar
  28. 28.
    Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J., and Bruton, C. J. (1993) Evidence for the experimental transmission of cerebral P-amyloidosis to primates. Int. J. Exp. Path. 74, 441–454.Google Scholar
  29. 29.
    Kane, M. D., Lipinski, W. J., Callahan, M. J., Bian, F., Durham, R. A., Schwarz, R. D., Roher, A. E., and Walker, L. C. (submitted) P-Amyloid induction by intracerebral injection of Alzheimer brain homogenate in PAPP-transgenic mice.Google Scholar
  30. 30.
    Jucker, M., Stalder, M., Tolnay, M., Wiederhold, K. H., Abramowski, D., Sommer, B., Staufenbiel, M., and Calhoun, M. E. (1998) Cerebral amyloid angiopathy occurs in conjunction with amyloid plaque formation in APP transgenic mice. Neurobiol. Aging 19 (4S), S276 - S277.Google Scholar
  31. 31.
    Giaccone, G., Verga, L., Finazzi, M., Polio, B., Tagliavini, F., Frangione, B., and Bugiani, O. (1990) Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci. Lett. 114, 178–183.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirai, T., Kojima, S., Shimada, A., Umemura, T., Sakai, M., and Itakura, C. (1996) Age-related changes in the olfactory system of dogs. Neuropathol. Appl. Neurobiol. 22, 531539.Google Scholar
  33. 33.
    Tekirian, T. L. Saido, T. C., Markesbery, W. R., Russell, M. J. Wekstein, D. R., Patel, E., and Geddes, J. W. (1998) N-terminal heterogeneity of parenchymal and cerebrovascular AP deposits. J. Neuropath. Exp. Neurol. 57 76–94.Google Scholar
  34. 34.
    Uchida, K., Miyauchi, Y., Nakayama, H., and Goto, N. (1990) Amyloid angiopathy with cerebral hemorrhage and senile plaque in aged dogs. Jpn. J. Vet. Sci. 52, 605–611.CrossRefGoogle Scholar
  35. 35.
    Wegiel, J., Wisniewski, H. M., Dziewiatkowski, J., Tarnawski, M., Nowakowski, J., Dziewiatkowska, A., and Soltysiak, Z. (1995) The origin of amyloid in cerebral vessels of aged dogs. Brain Res. 705, 225–234.PubMedCrossRefGoogle Scholar
  36. 36.
    Uchida, K., Nakayama, H., and Goto, N. (1991) Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J. Vet. Med. Sci. 53, 1037–1042.PubMedCrossRefGoogle Scholar
  37. 37.
    Pauli, B. and Luginbühl, H. (1971) Fluorescenzmikroskopische Untersuchungen der cerebralen Amyloidose bei alten Hunden and senilen Menschen. Acta Neuropath. 19, 121128.Google Scholar
  38. 38.
    Dahme, E. and Schröder, B. (1979) Kongophile Angiopathie, cerebrovasculäre Mikroaneurysmen and cerebrale Blutungen beim alten Hund. Zbl. Vet. Med. A. 26, 601613.Google Scholar
  39. 39.
    Su, M.-Y., Head, E., Brooks, W. M., Wang, Z., Muggenburg, B. A., Adam, G. E., Sutherland, R., Cotman, C. W., and Nalcioglu, 0. (1998) Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol. Aging 19, 479–485.Google Scholar
  40. 40.
    Walker, L.C. and Durham, R.A. (1999) Cerebrovascular amyloidosis: Experimental analysis in vitro and in vivo. Histol. Histopathol. (in press).Google Scholar
  41. 41.
    Davis, J. and Van Nostrand, W. E. (1996) Enhanced pathologic properties of Dutch-type mutant amyloid 13-protein. Cell Biol. 93, 2996–3000.Google Scholar
  42. 42.
    Frackowiak, J. Mazur-Kolecka, B., Wisniewski, H. M., Potempska, A., Carroll, R. T., Emmerling, M. R., and Kim, K. S. (1995) Secretion and accumulation of Alzheimer’s 0- protein by cultured vascular smooth muscle cells from old and young dogs. Brain Res. 676 225–230.Google Scholar
  43. 43.
    Kawai, M., Kalaria, R. N., Cras, P., Siedlak, S. L., Velasco, M. E., Shelton, E. R., Chan, H. W., Greenberg, B. D., and Perry, G. (1993) Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Res. 623, 142–146.PubMedCrossRefGoogle Scholar
  44. 44.
    Wisniewski, H. M. and Wiegel, J. (1994) (3-Amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropath. 87, 233–241.Google Scholar
  45. 45.
    Yamada, M., Itoh, Y., Shintaku, M., Kawamura, J., Jensson, O., Thomsteinsson, L., Suematsu, N., Matsushita, M., and Otomo, E. (1996) Immune reactions associated with cerebral amyloid angiopathy. Stroke 27, 1155–1162.PubMedCrossRefGoogle Scholar
  46. 46.
    Kiatipattanasakul, W., Nakayama, H., Nakamura, S., and Koi, K. (1998) Lectin histochemistry in the aged dog brain. Acta Neuropath. 95, 261–268.PubMedCrossRefGoogle Scholar
  47. 47.
    Uchida, K., Kuroki, K., Yoshino, T., Yamaguchi, R., and Tateyama, S. (1997) Immunohistochemical study of constituents other than 0-protein in canine senile plaques and cerebral amyloid angiopathy. Acta Neuropath. 93, 277–284.PubMedCrossRefGoogle Scholar
  48. 48.
    Walker, L. C. (1997) Animal models of cerebral (3-amyloid angiopathy. Brain Res. Rev. 25, 70–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Tomonaga, M. (1981) Cerebral amyloid angiopathy in the elderly. J. Am. Geriatr. Soc. 29, 151–157.PubMedGoogle Scholar
  50. 50.
    Vinters, H. V. (1987) Cerebral amyloid angiopathy: a critical review. Stroke 18, 311–324.PubMedCrossRefGoogle Scholar
  51. 51.
    Wattendorff, A. R., Frangione, B., Luyendijk, W., and Bots, G. T. A. M. (1995) Hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D): clinicopathological studies. J. Neurol. Neurosurg. Psychiatr. 58, 699–705.PubMedCrossRefGoogle Scholar
  52. 52.
    Wong, C. W., Quaranta, V., and Glenner, G. G. (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc. Natl. Acad. Sci., USA 82, 8729–8732.CrossRefGoogle Scholar
  53. 53.
    Prelli, F., Castano, E. M., van Duinen, S. G., Bots, G. T. A. M., Luyendijk, W., and Frangione, B. (1988a) Different processing of Alzheimer’s 3-protein precursor in the vessel wall of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Biochem. Biophys. Res. Comm. 151, 1150–1155.PubMedCrossRefGoogle Scholar
  54. 54.
    Prelli, F., Castaiïo, E., Glenner, G. G., and Frangione, B. (1988b) Differences between vascular and plaque core amyloid in Alzheimer’s disease. J. Neurochem. 51, 648–651.PubMedCrossRefGoogle Scholar
  55. 55.
    Roher, A. E., Lowenson, J.D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., and Ball, M. J. (1993) 3-Amyloid (1–42) is a major component of cerebrovascular amyloid deposits: Implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci., USA 90, 10836–10840.Google Scholar
  56. 56.
    Gearing, M., Tigges, J., Mori, H., and Mirra, S. S. (1996) Aß40 is a major form of ßamyloid in nonhuman primates. Neurobiol. Aging 17, 903–308.PubMedCrossRefGoogle Scholar
  57. 57.
    Sawamura, N., Tamaoka, A., Shoji, S., Koo, E. H., Walker, L. C., and Mori, H. (1997) Characterization of amyloid beta protein species in cerebral amyloid angiopathy of a squirrel monkey by immunocytochemistry and enzyme-linked immunosorbent assay. Brain Res. 764, 225–229.PubMedCrossRefGoogle Scholar
  58. 58.
    Emmers, R. and Akert, K. (1963) A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Saimiri sciureus), University of Wisconsin Press, Madison, Wisconsin.Google Scholar
  59. 59.
    Rosenblum, L. A. and Coe, C. L. (1985) Handbook of Squirrel Monkey Research, Plenum Press, New York.CrossRefGoogle Scholar
  60. 60.
    Walker, L. C. (1993) Comparative neuropathology of aged nonhuman primates. Neurobiol. Aging 14, 667.PubMedCrossRefGoogle Scholar
  61. 61.
    Hendriks, L., van Duijn, C. M., Cras, P., Cruts, M., Van Hul, W., van Harskamp, F., Warren, A., McInnis, M. G., Antonarakis, S. E., Martin, J-J., Hofman, A., and Van Broeckhoven, C. (1992) Presenile dementia and cerebral hemorrhage linked to a mutation at codon 692 of the ß-amyloid precursor protein gene. Nature Genet. 1, 218–221.PubMedCrossRefGoogle Scholar
  62. 62.
    Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van Duinen, S. G., Bots, G. T. A. M., Luyendijk, W., and Frangione, B. (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126.PubMedCrossRefGoogle Scholar
  63. 63.
    Calenda, A., Jallegeas, V., Silhol, S., Bellis, M., and Bons, N. (1995) Identification of a unique apolipoprotein E allele in Microcebus murinus; apoe brain distribution and co-localization with 13-amyloid and tau proteins. Neurobiol. Dis. 2, 169–176.Google Scholar
  64. 64.
    Morelli, L., Wei, L., Amorim, A., McDermid, J., Abee, C. R., Frangione, B., Walker, L. C., and Levy, E. (1996) Cerebrovascular amyloidosis in squirrel monkeys and rhesus monkeys: apolipoprotein E genotype. FEBS Letters 379, 132–134.CrossRefGoogle Scholar
  65. 65.
    Mufson, E. J., Benzing, W. C., Cole, G. M., Wang, H., Emerich, D. F., Sladek, J. R., Morrison, J. H., and Kordower, J. H. (1994) Apolipoprotein E-immunoreactivity in aged rhesus monkey cortex: Colocalization with amyloid plaques. Neurobiol. Aging 15, 62 1627.Google Scholar
  66. 66.
    Poduri, A., Gearing, M., Rebeck, G. W., Mina, S. S.,Tigges, J., and Hyman, B. T. (1994) Apolipoprotein E4 and beta amyloid in senile plaques and cerebral blood vessels of aged rhesus monkeys. Am. J. Pathol. 144, 1183–1187.Google Scholar
  67. 67.
    Weisgraber, K. H., Pitas, R. E., and Mahley, R. W. (1994) Lipoproteins, neurobiology, and Alzheimer’s disease: structure and function of apolipoprotein E. Curr. Opin. Struct. Biol. 4, 507–515.CrossRefGoogle Scholar
  68. 68.
    Levy, E., Lopez-Otin, C., Ghiso, J., Geltner, D., and Frangione, B. (1989) Stroke in Icelandic patients with hereditary amyloid angiopathy is related to a mutation in the cystatin C gene, an inhibitor of cysteine proteases. J. Exp. Med. 169, 1771–1778.PubMedCrossRefGoogle Scholar
  69. 69.
    Olafsson, j., Thorsteinsson, L., and Jensson, Ô. (1996) The molecular pathology of hereditary cystatin C amyloid angiopathy causing brain hemorrhage. Brain Path. 6, 121126.Google Scholar
  70. 70.
    Graffagnino, C., Herbstreith, M. H., Schmechel, D. E., Levy, E., Roses, A. D., and Alberts, M. J. (1995) Cystatin C mutation in an elderly man with sporadic amyloid angiopathy and intracerebral hemorrhage. Stroke 26, 2190–2193.PubMedCrossRefGoogle Scholar
  71. 71.
    Wei, L., Walker, L. C., and Levy, E. (1996) Cystatin C: Icelandic-like mutation in an animal model of cerebrovascular ß-amyloidosis. Stroke 27, 2080–2085.PubMedCrossRefGoogle Scholar
  72. 72.
    Walker, L. C., Price, D. L., Voytko, M. L., and Schenk, D. B. (1994) Labeling of cerebral amyloid in vivo with a monoclonal antibody. J. Neuropath. Exp. Neurol. 53, 377–383.PubMedCrossRefGoogle Scholar
  73. 73.
    Ghilardi, J. R., Calton, M., Stimson, E. R., Rogers, S., Walker, L. C., Maggio, J. E., and Mantyh, P. W. (1996) Intra-arterial infusion of 1251-A131_40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport 7, 2607–2611.CrossRefGoogle Scholar
  74. 74.
    Mackic, J. B., Weiss, M. H., Miao, W., Kirkman, E., Ghiso, J., Calero, M., Bading, J., Frangione, B., and Zlokovic, B. V. (1998) Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid 13 peptide in aged squirrel monkey with cerebral amyloid angiopathy. I Neurochem. 70 210–215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Lary C. Walker
    • 1
  1. 1.Neuropathology Laboratory, Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research DivisionWarner-LambertAnn ArborUSA

Personalised recommendations