Amyloid β Protein Internalization and Production by Canine Smooth Muscle Cells

  • Reinhard Prior
  • Britta Urmoneit


Aging dogs show progressive β-amyloid (Aβ) deposition within the walls of small cortical and leptomeningeal arteries and develop cerebral amyloid angiopathy (CAA) that is morphologically identical to human CAA associated with Alzheimer’s disease and with aging. The canine and the human Aβ amino acid sequences are identical, which is an essential requirement for an animal model of β-amyloidosis, because subtle changes within the Aβ peptide sequence may impredictibly change its aggregation properties. Since cerebrovascular Aβ deposits are always closely associated with vascular smooth muscle cells (SMCs) or the SMC-related parenchymal pericytes, primary canine cerebrovascular SMC cultures have been used to investigate the molecular mechanisms underlying the development of cerebrovascular Aβ deposition. This review summarizes the results obtained with canine SMC cultures and discusses their potential implications for the pathogenesis of CAA.


Amyloid Precursor Protein Scavenger Receptor Cerebral Amyloid Angiopathy ApoE4 Genotype SY5Y Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frackowiak, J., Mazur-Kolecka, B., Wegiel, J., Kim, K. S., and Wiesniewski, H. M. (1995). Culture of canine vascular myocytes as a model to study production and accumulation of 0-protein by cells involved in amyloidogenesis, in K. Iqbal, J.A. Mortimer, B. Winblad, and H.M. Wisniewski (eds.), Research Advances in Alzheimer’s Disease and Related Disorders, John Wiley zhaohuan Sons, Chichester, pp 747–754Google Scholar
  2. 2.
    Urmoneit, B., Prikulis, I., Wihl, G., D’Urso, D., Frank, R., Heeren, J., Beisiegel, U., and Prior, R. (1997) Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy, Lab. Invest. 77, 157–166.PubMedGoogle Scholar
  3. 3.
    Bjorkerud, S. (1985) Cultivated human arterial smooth muscle displays heterogeneous pattern of growth and phenotypic variation, Lab. Invest. 53, 303–310.PubMedGoogle Scholar
  4. 4.
    Greaves, D. R., Gough, P. J., and Gordon, S. (1998) Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence, Curr. Opin. Lipidol. 9, 425–432.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamada, Y., Doi, T., Hamakubo, T., and Kodama, T. (1998) Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system, Cell. Mol. Life Sci. 54, 628–640.PubMedCrossRefGoogle Scholar
  6. 6.
    Prior, R., Wihl, G., and Urmoneit, B. Apolipoprotein E, smooth muscle cells and the pathogenesis of cerebral amyloid angiopathy: the potential role of impaired cerebrovascular Aß-clearance, Ann. NY Acad. Sci. (in press).Google Scholar
  7. 7.
    Berrou, E., Quarck, R., Fontenay-Roupie, M., Levy-Toledano, S., Tobelem, G., and Bryckaert, M. (1995) Transforming growth factor-beta 1 increases internalization of basic fibroblast growth factor by smooth muscle cells: implication of cell-surface heparan sulphate proteoglycan endocytosis, Biochem. J. 311, 393–399.PubMedGoogle Scholar
  8. 8.
    Weaver, A. M., Lysiak, J. J., and Gonias, S. L. (1997) LDL receptor family-dependent and -independent pathways for the internalization and digestion of lipoprotein lipase-associated beta- VLDL by rat vascular smooth muscle cells, J. Lipid Res. 38, 1841–1850.PubMedGoogle Scholar
  9. 9.
    Mahley, R. W., and Ji, Z. S. (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E, J. Lipid Res. 40, 1–16.PubMedGoogle Scholar
  10. 10.
    Wyss-Coray, T., Masliah, E., Mallory, M., McConlogue, L., Johnson-Wood, K., Lin, C., and Mucke, L. (1997) Amyloidogenic role of cytokine TGF-betal in transgenic mice and in Alzheimer’s disease, Nature 389, 603–606.PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis, R. J., Olichney, J. M., Thal, L. J., Mirra, S. S., Morris, J. C., Beekly, D., and Heyman, A. (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV, Neurology 46, 1592–1596.PubMedCrossRefGoogle Scholar
  12. 12.
    Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993) Apolipoprotein E: high-avidity binding to betaamyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl. Acad. Sci. USA 90, 1977–1981.PubMedCrossRefGoogle Scholar
  13. 13.
    Wisniewski, T., Golabek, A., Matsubara, E., Ghiso, J., and Frangione, B. (1993) Apolipoprotein E: binding to soluble Alzheimer’s beta-amyloid, Biochem. Biophys. Res. Commun. 192, 359–365.PubMedCrossRefGoogle Scholar
  14. 14.
    Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D. B. (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid, J. Neurochem. 61, 1965–1968.PubMedCrossRefGoogle Scholar
  15. 15.
    Alonzo, N. C., Hyman, B. T., Rebeck, G. W., and Greenberg, S. M. (1998) Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels, J. Neuropathol. Exp. Neurol. 57, 353–359.PubMedCrossRefGoogle Scholar
  16. 16.
    Gravina, S. A., Ho, L., Eckman, C. B., Long, K. E., Otvos, L., Jr., Younkin, L. H., Suzuki, N., and Younkin, S. G. (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43), J. Biol. Chem. 270, 7013–7016.PubMedCrossRefGoogle Scholar
  17. 17.
    Shinkai, Y., Yoshimura, M., Ito, Y., Odaka, A., Suzuki, N., Yanagisawa, K., and Ihara, Y. (1995) Amyloid beta-proteins 1–40 and 1–42(43) in the soluble fraction of extra-and intracranial blood vessels, Ann. Neurol. 38, 421–428.PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki, N., Iwatsubo, T., Odaka, A., Ishibashi, Y., Kitada, C., and Ihara, Y. (1994) High tissue content of soluble beta 1–40 is linked to cerebral amyloid angiopathy, Am. J. Pathol. 145, 452–460.PubMedGoogle Scholar
  19. 19.
    Burdick, D., Kosmoski, J., Knauer, M. F., and Glabe, C. G. (1997) Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, A beta 1–42, in differentiated PC12 cells, Brain Res. 746, 275–284.PubMedCrossRefGoogle Scholar
  20. 20.
    Knauer, M. F., Soreghan, B., Burdick, D., Kosmoski, J., and Glabe, C. G. (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein, Proc. Natl. Acad. Sci. USA 89, 7437–7441.PubMedCrossRefGoogle Scholar
  21. 21.
    Paresce, D. M., Chung, H., and Maxfield, F. R. (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells, J. Biol. Chem. 272, 29390–29397.PubMedCrossRefGoogle Scholar
  22. 22.
    Jarrett, J. T., Berger, E. P., and Lansbury, P. T., Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease, Biochemistry 32, 4693–4697.PubMedCrossRefGoogle Scholar
  23. 23.
    Newby, A. C., and George, S. J. (1996) Proliferation, migration, matrix turnover, and death of smooth muscle cells in native coronary and vein graft atherosclerosis, Curr. Opin. Cardiol. 11, 574–582.PubMedCrossRefGoogle Scholar
  24. 24.
    Prior, R., D’Urso, D., Frank, R., Prikulis, I., and Pavlakovic, G. (1995) Experimental deposition of Alzheimer amyloid beta-protein in canine leptomeningeal vessels, Neuroreport 6, 1747–1751.PubMedCrossRefGoogle Scholar
  25. 25.
    Prior, R., D’Urso, D., Frank, R., Prikulis, I., Wihl, G., and Pavlakovic, G. (1996) Canine leptomeningeal organ culture: a new experimental model for cerebrovascular betaamyloidosis, J. Neurosci. Methods 68, 143–148.PubMedGoogle Scholar
  26. 26.
    Frackowiak, J., Zoltowska, A., and Wisniewski, H. M. (1994) Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease, J. Neuropathol. Exp. Neurol. 53, 637–645.PubMedCrossRefGoogle Scholar
  27. 27.
    Aleshkov, S., Abraham, C. R., and Zannis, V. I. (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (140). Relevance to Alzheimer’s disease, Biochemistry 36, 10571–10580.PubMedCrossRefGoogle Scholar
  28. 28.
    LaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., and Frail, D. E. (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid, J. Biol. Chem. 269, 23403–23406.Google Scholar
  29. 29.
    Ji, Z. S., Pitas, R. E., and Mahley, R. W. (1998) Differential cellular accumulation/retention of apolipoprotein E mediated by cell surface heparan sulfate proteoglycans. Apolipoproteins E3 and E2 greater than E4, J. Biol. Chem. 273, 1345213460.Google Scholar
  30. 30.
    Beffert, U., Aumont, N., Dea, D., Lussier-Cacan, S., Davignon, J., and Poirier, J. (1999) Apolipoprotein E isoform-specific reduction of extracellular amyloid in neuronal cultures, Brain Res. Mol. Brain Res. 68, 181–185.PubMedCrossRefGoogle Scholar
  31. 31.
    Jordan, J., Galindo, M. F., Miller, R. J., Reardon, C. A., Getz, G. S., and LaDu, M. J. (1998) Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloidinduced toxicity in rat hippocampal pyramidal neuronal cultures, J. Neurosci. 18, 195–204.PubMedGoogle Scholar
  32. 32.
    Yang, D. S., Small, D. H., Seydel, U., Smith, J. D., Hallmayer, J., Gandy, S. E., and Martins, R. N. (1999) Apolipoprotein E promotes the binding and uptake of beta-amyloid into Chinese hamster ovary cells in an isoform-specific manner, Neuroscience 90, 1217–1226.PubMedCrossRefGoogle Scholar
  33. 33.
    Castillo, G. M., Ngo, C., Cummings, J., Wight, T. N., and Snow, A. D. (1997) Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer’s disease, accelerates A beta fibril formation, and maintains A beta fibril stability, J. Neurochem. 69, 2452–2465.PubMedCrossRefGoogle Scholar
  34. 34.
    Snow, A. D., Kinsella, M. G., Parks, E., Sekiguchi, R. T., Miller, J. D., Kimata, K., and Wight, T. N. (1995) Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the beta-amyloid protein of Alzheimer’s disease, Arch. Biochem. Biophys. 320, 84–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Snow, A. D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimata, K., Mizutani, A., Arai, M., Schreier, W. A., and Morgan, D. G. (1994) An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain, Neuron 12, 219–234.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Nostrand, W. E., Melchor, J. P., and Ruffini, L. (1998) Pathologic amyloid beta-protein cell surface fibril assembly on cultured human cerebrovascular smooth muscle cells, J. Neurochem. 70, 216–223.PubMedCrossRefGoogle Scholar
  37. 37.
    Mackic, J. B., Weiss, M. H., Miao, W., Kirkman, E., Ghiso, J., Calero, M., Bading, J., Frangione, B., and Zlokovic, B. V. (1998) Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy, J. Neurochem. 70, 210–215.PubMedCrossRefGoogle Scholar
  38. 38.
    Ushiyama, M., Ikeda, S., and Yanagisawa, N. (1991) Transthyretin-type cerebral amyloid angiopathy in type I familial amyloid polyneuropathy, Acta Neuropathol. 81, 524–528.PubMedCrossRefGoogle Scholar
  39. 39.
    Kiuru, S. (1998) Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide, Amyloid 5, 55–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Levy, E., Lopez-Otin, C., Ghiso, J., Geltner, D., and Frangione, B. (1989) Stroke in Icelandic patients with hereditary amyloid angiopathy is related to a mutation in the cystatin C gene, an inhibitor of cysteine proteases, J. Exp. Med. 169, 1771–1778.PubMedCrossRefGoogle Scholar
  41. 41.
    Frackowiak, J., Mazur-Kolecka, B., Wisniewski, H. M., Potempska, A., Carroll, R. T., Emmerling, M. R., and Kim, K. S. (1995) Secretion and accumulation of Alzheimer’s beta-protein by cultured vascular smooth muscle cells from old and young dogs, Brain. Res. 676, 225–230.PubMedCrossRefGoogle Scholar
  42. 42.
    Wisniewski, H. M., Frackowiak, J., and Mazur-Kolecka, B. (1995) In vitro production of beta-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels, Neurosci. Lett. 183, 120–123.Google Scholar
  43. 43.
    Mazur-Kolecka, B., Frackowiak, J., Carroll, R. T., and Wisniewski, H. M. (1997) Accumulation of Alzheimer amyloid-beta peptide in cultured myocytes is enhanced by serum and reduced by cerebrospinal fluid, J. Neuropathol. Exp. Neurol. 56, 263–272.PubMedCrossRefGoogle Scholar
  44. 44.
    Mazur-Kolecka, B., Frackowiak, J., Krzeslowska, J., Ramakrishna, N., Haske, T., Emmerling, M. R., Zhang, W., Kim, K. S., and Wisniewski, H. M. (1999) Apolipoprotein E alters metabolism of AbetaPP in cells engaged in beta-amyloidosis, I Neuropathol. Exp. Neurol. 58, 288–295.CrossRefGoogle Scholar
  45. 45.
    Van Nostrand, W. E., Davis-Salinas, J., and Saporito-Irwin, S. M. (1996) Amyloid beta-protein induces the cerebrovascular cellular pathology of Alzheimer’s disease and related disorders, Ann. N YAcad. Sci. 777, 297–302.CrossRefGoogle Scholar
  46. 46.
    Calhoun, M. E., Burgermeister, P., Phinney, A. L., Stalder, M., Tolnay, M., Wiederhold, K. H., Abramowski, D., Sturchler-Pierrat, C., Sommer, B., Staufenbiel, M., and Jucker, M. Neuronal overexpression of mutant APP results in prominent deposition of cerebrovascular amyloid (submitted).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Reinhard Prior
    • 1
  • Britta Urmoneit
    • 1
  1. 1.Department of NeurologyUniversity of DuesseldorfDuesseldorfGermany

Personalised recommendations