Skip to main content

Control of Caenorhabditis Elegans Behaviour and Development by G Proteins Big and Small

  • Chapter
Cell Signalling in Prokaryotes and Lower Metazoa

Summary

Caenorhabditis elegans molecular genetics has allowed analysis of many of its heterotrimeric GTP-binding proteins (G proteins; α, β, γ) and small GTP-binding proteins. The roles of its 20 alpha, two beta and two gamma heterotrimeric G protein subunits have been studied by gene knockouts, overexpression analysis, gene interaction experiments and by analysis of expression patterns. The G alpha subunits that are highly conserved with mammalian G protein alpha subunits are broadly expressed and are involved in neuromuscular regulation. The less conserved G alpha subunits are expressed in small subsets of sensory neurons and play a role in sensory behaviour. The study of small G proteins such as ras in C. elegans has helped to elucidate their cellular functions. Maintenance of signalling specificity and interactions between G protein signalling pathways can be studied when the G proteins function in the same processes. In principle, one can hope to understand the role of each G protein in every cell in C. elegans, and thus unravel cell type-specific variation in signalling pathways and the full spectrum of the cellular roles for these crucial regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, S., Maruyama, LN., Kozma, R., Lee, J., Brenner, S., and Lim, L. (1992) The Caenorhabditis elegans unc-13 gene product is a phospholipid-dependent high-affinity phorbol ester receptor. Biochemical Journal 287, 995–999.

    PubMed  CAS  Google Scholar 

  • Alam, M.R., Johnson, R.C., Darlington, D.N., Hand, T.A., Mains, R.E., and Eipper, B.A. (1997) Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptidylglycine alpha-amidating monooxygenase, an integral membrane peptide-processing enzyme. Journal of Biological Chemistry 272, 12667–12675.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, D.G., and Thomson, J.N. (1976) The pharynx of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B 275, 299–325.

    Article  CAS  Google Scholar 

  • Arshaysky, V.Y., and Pugh, E.N., Jnr. (1998) Lifetime regulation of G protein-effector complex: emerging importance of RGS proteins. Neuron 20, 11–14.

    Google Scholar 

  • Avery, L. (1993) The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917.

    CAS  Google Scholar 

  • Barger, A.J., Hart, A.C., and Kaplan, J.M. (1998) Ga,-induced neurodegeneration in Caenorhabditis elegans. Journal of Neuroscience 18, 2871–2880.

    Google Scholar 

  • Bargmann, C.I. (1993) Genetic and cellular analysis of behavior in C. elegans. Annual Review of Neuroscience 16, 47–71.

    Article  CAS  Google Scholar 

  • Bargmann, C.I. (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033. Bargmann, C.I., and Horvitz, H.R. (199la) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742.

    Article  Google Scholar 

  • Bargmann, C.I., and Horvitz, H.R. (1991b) Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246.

    CAS  Google Scholar 

  • Bargmann, C.I., and Mori, I. (1997) Chemotaxis and Thermotaxis. In: D.L. Riddle, T. Blumenthal, B.J. Meyer and J.R. Priess (eds.) C. ELEGANS II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 717–737.

    Google Scholar 

  • Bargmann, C.I., Thomas, J.H., and Horvitz, H.R. (1990) Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology 55, 529–538.

    Article  CAS  Google Scholar 

  • Bargmann, C I, Hartweig, E., and Horvitz, H.R. (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527.

    CAS  Google Scholar 

  • Berman, D.M., Kozasa, T., and Gilman, A.G. (1996) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. Journal of Biological Chemistry 271, 27209–27212.

    Article  PubMed  CAS  Google Scholar 

  • Berman, D.M., Wilkie, T.M., and Gilman, A.G. (1996) GAIP and RGS4 are GTPase-activating proteins for the G, subfamily of G protein a subunits. Cell 86, 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Berman, D.M., and Gilman, A.G. (1998) Mammalian RGS proteins: barbarians at the gate. Journal of Biological Chemistry 273, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1993) Inositol trisphosphate and calcium signaling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Betty, M., Harnish, S.W., Rhodes, K.J., and Cockett, M.I. (1998) Distribution of heterotrimeric G-protein beta and gamma subunits in the rat brain. Neuroscience 85, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Betz, A., Ashery, U., Rickman, M., Neher, E., Sudlof, T.C., Rettig, J., and Brose, N. (1998) Munc13–1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123–136.

    Article  PubMed  CAS  Google Scholar 

  • Birnby, D.A., Link, E.M., Vowels, J.J., Tian, H., Colacurcio, P.L., and Thomas, J.H. (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155, 85–104.

    CAS  Google Scholar 

  • Blinder, D., and Jenness, D.D. (1989) Regulation of postreceptor signaling in the pheromone response pathway of Saccharomyces cerevisiae. Molecular and Cellular Biology 9, 3720–3726.

    CAS  Google Scholar 

  • Blomqvist, A.G., and Herzog, H. (1997) Y-receptor subtypes — how many more? Trends in Neurosciences 20, 294–298.

    CAS  Google Scholar 

  • Bluml, K., Mutschler, E., and Wess, J. (1994a) Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydolysis. Journal of Biological Chemistry 269, 402–405.

    PubMed  CAS  Google Scholar 

  • Bluml, K., Mutschler, E., and Wess, J. (1994b) Functional role in ligand finding and receptor activation of an asparagine residue present in the 6th transmembrane domain of all muscarinic acetylcholine receptors. Journal of Biological Chemistry 269, 18870–18876.

    PubMed  CAS  Google Scholar 

  • Boland, L.M., Allen, A.C., and Dingledine, R. (1991) Inhibition by bradykinin of voltage-activated barium current in a rat dorsal-root ganglion-cell line — role of protein kinase C. Journal of Neuroscience 11, 1140–1149.

    PubMed  CAS  Google Scholar 

  • Bourne, H.R., Sanders, D.A., and McCormick, F. (1990) The GTPase superfamily — a conserved switch for diverse cell functions. Nature 348, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, H.R., Sanders, D.A., and McCormick, F. (1991) The GTPase superfamily — conserved structure and molecular mechanism. Nature 349, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    CAS  Google Scholar 

  • Brown, A.M., and Bimbaumer, L. (1990) Ionic channels and their regulation by G protein subunits. Annual Review of Physiology 52, 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Brundage, L., Avery, L., Katz, A., Kim, U.-J., Mendel, J.E., Sternberg, P.W., and Simon, M.I. (1996) Mutations in a C. elegans Gqa gene disrupt movement, egg-laying and viability. Neuron 16, 999–1009.

    Article  PubMed  CAS  Google Scholar 

  • Buck, L.B. (1996) Information coding in the vertebrate olfactory system. Annual Review of Neuroscience 19, 517–544.

    Article  PubMed  CAS  Google Scholar 

  • Cassada, R.C., and Russell, R.L. (1975) The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Developmental Biology 46, 326–342.

    Article  CAS  Google Scholar 

  • Cerione, R.A., and Zheng, Y. (1996) The Dbl family of oncogenes. Current Opinion in Cell Biology 8, 216–222.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Seow, K.T., Guo, K., Yaw, L.P., and Lin, S.-C. (1999) The membrane association domain of RGS16 contains unique amphipathic features that are conserved in RGS4 and RGS5. Journal of Biological Chemistry 274, 19799–19806.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.K., Wieland, T., and Simon, M.I. (1996) RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling. Proceedings of the National Academy of Sciences, USA 93, 12885–12889.

    Article  CAS  Google Scholar 

  • Chen, E.B., Branda, C.S., and Stern, M.J. (1997) Genetic enhancers of sem-5 define components of the gonad-independent guidance mechanism controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Developmental Biology 182, 88–100.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W.N., Chen, S., Yap, S.F., and Lim, L. (1996) The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. Journal of Biological Chemistry 271, 26362–26368.

    Article  PubMed  CAS  Google Scholar 

  • Clandinin, T.R., DeModena, J.A., and Sternberg, P.W. (1998) Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 92, 523–533.

    CAS  Google Scholar 

  • Coburn, C.M., and Bargmann, C.I. (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17, 695–706.

    Article  CAS  Google Scholar 

  • Colbert, H.A., and Bargmann, C.I. (1995) Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron 14, 803–812.

    Article  CAS  Google Scholar 

  • Colmers, W.F., and Bleakman, D. (1994) Effects of neuropeptide-Y on the electrical properties of neurons. Trends in Neurosciences 17, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Copley, R.R., Schultz, J., Ponting, C.P., and Bork, P. (1999) Protein families in multicellular organisms. Current Opinion in Structural Biology 9, 408–415.

    Article  PubMed  CAS  Google Scholar 

  • Costa, M., Raich, W., Agbunag, C., Leung, B., Hardin, J., and Priess, J.R. (1998) A putative catenincadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. Journal of Cell Biology 141, 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Croll, N.A. (1970) The Behaviour of Nematodes. Edward Arnold Publishers, Ltd., London, pp. 18–27.

    Google Scholar 

  • Curtis, B.M., and Catterall, W.A. (1985) Phosphorylation of the calcium-antagonist receptor of the voltage-sensitive calcium-channel by cAMP-dependent protein-kinase. Proceedings of the National Academy of Sciences, USA 82, 2528–2532.

    Article  CAS  Google Scholar 

  • Dal Santo, P., Logan, M.A., Chisholm, A.D., and Jorgensen, E.M. (1999) The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98, 757–767.

    CAS  Google Scholar 

  • Debant, A., Serra-Pages, C., Seipel, K., O’Brien, S., Tang, M., Park, S.H., and Streuli, M. (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proceedings of the National Academy of Sciences, USA 93, 5466–5471.

    Article  CAS  Google Scholar 

  • de Bono, M., and Bargmann, C.I. (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679–689.

    Google Scholar 

  • Desai, C., and Horvitz, H.R. (1989) Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics 121, 703–721.

    CAS  Google Scholar 

  • Desai, C., Garriga, G., McIntire, S.L., and Horvitz, H.R. (1988) A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638–646.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, L., and Farquhar, M.G. (1999) RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends in Cell Biology 9, 138–144.

    Article  PubMed  Google Scholar 

  • Dohlman, H.G., Thorner, J., Caron, M.G., and Lefkowitz, R.J. (1991) Model systems for the study of 7-transmembrane-segment receptors. Annual Review of Biochemistry 60, 653–688.

    Article  PubMed  CAS  Google Scholar 

  • Dohlman, H.G., Apaniesk, D., Chen, Y., Song, J., and Nusskern, D. (1995) Inhibition of G-protein signaling by dominant gain-of-function mutations in SST2P, a pheromone desensitization factor in Saccharomyces cerevisiae. Molecular and Cellular Biology 15, 3635–3643.

    CAS  Google Scholar 

  • Dohlman, H.G., Song, J., Ma, D.R., Courchesne, W.E., and Thorner, J. (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa 1 (the G-protein alpha subunit). Molecular and Cellular Biology 16, 5194–5209.

    PubMed  CAS  Google Scholar 

  • Driscoll, M., and Kaplan, J. (1997) Mechanotransduction. In: D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess (eds.) C. ELEGANS II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 645–677.

    Google Scholar 

  • Eaton, S., Auvinen, P., Luo, L.Q., Jan, Y.N., and Simons, K. (1995) CDC42 and Rae! control different actin-dependent processes in the Drosophila wing disc epithelium. Journal of Cell Biology 131, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi, F.A.W., and Chess, A. (1998) Olfactory G proteins: simple and complex signal transduction. Current Biology 8, R431 - R433.

    Article  PubMed  CAS  Google Scholar 

  • Estevez, M., Attisano, L., Wrana, J.L., Albert, P.S., Massague, J., and Riddle, D.L. (1993) The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365, 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Faurobert, E., and Hurley, J.B. (1997) The core domain of a new retina specific RGS protein stimulates the GTPase activity of transducin in vitro. Proceedings of the National Academy of Sciences, USA 94, 2945–2950.

    Article  CAS  Google Scholar 

  • Ferro-Novick, S., and Novick, P. (1993) The role of GTP-binding proteins in transport along the exocytotic pathway. Annual Review of Cell Biology 9, 575–599.

    Article  PubMed  CAS  Google Scholar 

  • Fino-Silva, I., and Plasterk, R.H.A. (1990) Characterization of a G-protein a-subunit gene from the nematode Caenorhabditis elegans. Journal of Molecular Biology 215, 483–487.

    Article  CAS  Google Scholar 

  • Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  Google Scholar 

  • Fleischman, L.F., Chahwala, S.B., and Cantley, L. (1986) Ras-transformed cells — altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231, 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, J.E., Lindorfer, M.A., DeFilippo, J.M., Yasuda, H., Guilmard, M., and Garrison, J.C. (1998) The G protein ß5 subunit interacts selectively with the G9a subunit. Journal of Biological Chemistry 273, 636–644.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, W.C., and Garriga, G. (1997) Genes necessary for C. elegans cell and growth cone migrations. Development 124, 1831–1843.

    PubMed  CAS  Google Scholar 

  • Fristrom, D. (1988) The cellular basis of epithelial morphogenesis — a review. Tissue and Cell 20, 645–690.

    Article  PubMed  CAS  Google Scholar 

  • Garriga, G., Guenther, C., and Horvitz, H.R. (1993) Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc-finger proteins. Genes and Development 7, 2097–2109.

    Article  PubMed  CAS  Google Scholar 

  • Georgi, L.L., Albert, P.S., and Riddle, D.L. (1990) daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 61, 635–645.

    Google Scholar 

  • Geppert, M., Goda, Y., Stevens, C.F., and Sundlof, T.C. (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A.G. (1987) G proteins: transducers of receptor-generated signals. Annual Review of Biochemistry 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J.W., and Riddle, D.L. (1982) A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J.W., and Riddle, D.L. (1984a) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Developmental Biology 102, 368–378.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J.W., and Riddle, D.L. (1984b) A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proceedings of the National Academy of Sciences, USA 81, 819–823.

    Article  CAS  Google Scholar 

  • Gudermann, T., Schonberg, T., and Schulz, G. (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annual Review of Neurosciences 20, 399–427.

    Article  CAS  Google Scholar 

  • Hadju-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R., and Sternberg, P.W. (1999) Antagonism between Goa and G9a in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goa signaling and regulates G9a activity. Genes and Development 13, 1780–1793.

    Article  Google Scholar 

  • Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Harden, N., Loh, H.Y., Chia, W., and Lim, L. (1995) Dominant inhibitory version of the small GTPbinding protein Rac disrupts cytoskeletal structures and inhibits developmental cell-shape changes in Drosophila. Development 121, 903–914.

    CAS  Google Scholar 

  • Hart, M.J., Eva, A., Zangrilli, D., Aaronson, S.A., Evans, T., Cerione, R.A., and Zheng, Y. (1994) Cellular-transformation and guanine-nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. Journal of Biological Chemistry 269, 62–65.

    PubMed  CAS  Google Scholar 

  • Hart, M.J., Jiang, X.J., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweiss, P.C., and Bollag, G. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Ga13. Science 280, 2112–2114.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne, D.J., Ito, M., and Erdodi, F. (1998) Myosin light chain phosphatase: subunit composition, interactions and regulation. Journal of Muscle Research and Cell Motility 19, 325–341.

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock, E.M., Culotti, J.G., Hall, D.H., and Stern, B.D. (1987) Genetics of cell and axon migrations in Caenorhabditis elegans. Development 100, 365–382.

    CAS  Google Scholar 

  • Hedgecock, E.M., Culotti, J.G., and Hall, D.H. (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85.

    Article  CAS  Google Scholar 

  • Hille, B. (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends in Neurosciences 17, 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Holz, R.W., Brondyk, W.H., Senter, R.A., Kuizon, L., and Macara, I.G. (1994) Evidence for the involvement of Rab3A in Cat±-dependent exocytosis from adrenal chromaffin cells. Journal of Biological Chemistry 269, 10229–10234.

    PubMed  CAS  Google Scholar 

  • Horvitz, H.R., Chalfie, M., Trent, C., Sulston, J.E., and Evans, P.D. (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 1012–1014.

    CAS  Google Scholar 

  • Hosono, R Sassa, T., and Kuno, S. (1989) Spontaneous mutations of trichlorfon resistance in the nematode Caenorhabditis elegans. Zoological Sciences 6, 697–708.

    Google Scholar 

  • Howell, A.M., and Rose, A.M. (1990) Essential genes in the hDf6 region of chromosome-1 in Caenorhabditis elegans. Genetics 126, 583–592.

    CAS  Google Scholar 

  • Huang, L.J.S., Durick, K., Weiner, J.A., Chun, J., and Taylor, S.S. (1997) D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proceedings of the National Academy of Sciences, USA 94, 11184–11189.

    Article  CAS  Google Scholar 

  • Huang, L.J.S., Wang, L., Ma, Y.L., Durick, K., Perkins, G., Deerinck, T.J., Ellisman, N.H., and Taylor, S.S. (1999) NH2-terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum. Journal of Cell Biology 145, 951–959.

    Article  PubMed  CAS  Google Scholar 

  • Huff, R.M., Axton, J.M., and Neer, E.J. (1985) Physical and immunological characterization of a guanine nucleotide-binding protein purified from bovine cerebral-cortex. Journal of Biological Chemistry 260, 864–871.

    Google Scholar 

  • Hunt, T.W., Fields, T.A., Casey, P.J., and Peralta, E.G. (1996) RGS10 is a selective activator of Ga; GTPase activity. Nature 383, 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, K., Ito, M., and Hartshorne, D.J. (1996) Phosphorylation of the large subunit of myosin phosphatase and inhibition of phosphatase activity. Journal of Biological Chemistry 271, 4733–4740.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, K., Liu, D.W.C., and Thomas, J.H. (1995) Genes that control a temperature-compensated clock in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 92, 10317–10321.

    Article  CAS  Google Scholar 

  • Jansen, G., Hazendonk, E., Thijssen, K.L., and Plasterk, R.H.A. (1997) Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genetics 17, 119–121.

    Article  CAS  Google Scholar 

  • Jansen, G., Thijssen, K.L., Werner, P., van der Horst, M., Hazendonk, E., and Plasterk, R.H.A. (1999) The complete family of genes encoding G proteins of Caenorhabditis elegans. Nature Genetics 21, 414–419.

    Article  CAS  Google Scholar 

  • Johannes, L., Lledo, P.M., Roa, M., Vincent, J.D., Henry, J.P., and Darchen, F. (1994) The GTPase Rab3A negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO Journal 13, 2029–2037.

    PubMed  CAS  Google Scholar 

  • Kaplan, J.M. (1996) Sensory signaling in Caenorhabditis elegans. Current Opinion in Neurobiology 6, 494–499.

    Article  CAS  Google Scholar 

  • Kaplan, J.M., and Horvitz, H.R. (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 90, 2227–2231.

    Article  CAS  Google Scholar 

  • Kavaliers, M. (1990) Inhibitory influences of mammalian FMRFamide (Phe-Met-Arg-Phe-amide)related peptides on nociception and morphine-induced and stress-induced analgesia in mice. Neuroscience Letters 115, 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers, M., and Colwell, D.D. (1993) Neuropeptide-FF (FLQPQRFamide) and IgG from neuropeptide-FF antiserum affect spatial learning in mice. Neuroscience Letters 157, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Kazanietz, M.G., Lewin, N.E., Bruns, J.D., and Blumberg, P.M. (1995) Characterization of the cysteine-rich region of the Caenorhabditis elegans protein Unc-13 as a high-affinity phorbol ester receptor — analysis of ligand-binding interactions, lipid cofactor requirements, and inhibitor sensitivity. Journal of Biological Chemistry 270, 10777–10783.

    Article  PubMed  CAS  Google Scholar 

  • Kemphues, K.J., Kusch, M., and Wolf, N. (1988) Maternal-effect lethal mutations on linkage group-II of Caenorhabditis elegans. Genetics 120, 977–986.

    CAS  Google Scholar 

  • Kimble, J., and Hirsh, D. (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental Biology 70, 396–417.

    Article  CAS  Google Scholar 

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa, T., Masuo, M., and Somlyo, A.P. (1991) G-protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proceedings of the National Academy of Sciences, USA 88, 9307–9310.

    Article  CAS  Google Scholar 

  • Klass, M.R., and Hirsh, D. (1976) Nonaging developmental variant of Caenorhabditis elegans. Nature 260, 523–525.

    Article  CAS  Google Scholar 

  • Kleuss, C., Hescheler, J., Ewel, C., Rosenthal, W., Schultz, G., and Wittig, B. (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353, 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, K.N., and Jesaitis, A.J. (1994) Neutrophil chemattractant receptors and the membrane skeleton. Bioessays 16, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Koelle, M.R., and Horvitz, H.R. (1996) EGL-10 regulates G protein signalling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, H., Mori, I., Rhee, J.-S., Akaike, N., and Ohshima, Y. (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17, 707–718.

    Google Scholar 

  • Korswagen, H.C., Van der Linden, A.M., and Plasterk, R.H. (1998) G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO Journal 17, 5059–5065.

    Article  PubMed  CAS  Google Scholar 

  • Korswagen, H.C., Park, J.H., Ohshima, Y., and Plasterk, R.H.A (1997) An activating mutation in a Caenorhabditis elegans G, protein induces neural degeneration. Genes and Development 11, 1493–1503.

    Article  PubMed  CAS  Google Scholar 

  • Kozasa, T., Jiang, X.J., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998) p115 RhoGEF, a GTPase activating protein for Ga12 and Gan. Science 280, 2109–2111.

    Google Scholar 

  • Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molecular Cell Biology 15, 1942–1952.

    CAS  Google Scholar 

  • Kubota, Y., Nomura, M., Kamm, K.E., Mumby, M.C., and Stull, J.T. (1992) GTPy S-dependent regulation of smooth muscle contractile elements. American Journal of Physiology 262, C405 — C410.

    PubMed  CAS  Google Scholar 

  • Lackner, M.R., Nurrish, Si.,. and Kaplan, J.M. (1999) Facilitation of synaptic transmission by EGL-30 Gqa and EGL-8 PLC ß: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346.

    CAS  Google Scholar 

  • Levay, K., Cabrera, J.L., Satpaev, D.K., and Slepak, V.Z. (1999) G135 prevents the RGS7-Gao interaction through binding to a distinct G gamma-like domain found in RGS7 and other RGS proteins. Proceedings of the National Academy of Sciences, USA 96, 2503–2507.

    Article  CAS  Google Scholar 

  • Lian, J.P., Stone, S., Jiang, Y., Lyons, P., and Ferro-Novick, S. (1994) Yptlp implicated in v-SNARE activation. Nature 372, 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Lindorfer, M.A., Myung, C.S., Savino, Y., Yasuda, H., Khazan, R., and Garrison, J.C. (1998) Differential activity of the G protein 13572 subunit at receptors and effectors. Journal of Biological Chemistry 273, 34429–34436.

    Article  PubMed  CAS  Google Scholar 

  • Lledo, P.-M., Vernier, P., Vincent, J.-D., Mason, W.T., and Zorac, R. (1993) Inhibition of Rab3B expression attenuates Ca++-dependent exocytosis in rat anterior pituitary cells. Nature 364, 540–544.

    Article  PubMed  CAS  Google Scholar 

  • Lochrie, M.A., Mendel, J.E., Sternberg, P.W., and Simon, M.I. (1991) Homologous and unique G protein alpha subunits in the nematode Caenorhabditis elegans. Cell Regulation 2, 135–154.

    CAS  Google Scholar 

  • Luo, L., Liao, Y.J., Jan, L.Y., and Jan, Y.N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes and Development 8, 1787–1802.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., Hensch, T.K., Ackerman, L., Barbel, S., Jan, L.Y., and Jan, Y.N. (1996) Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840.

    Article  PubMed  CAS  Google Scholar 

  • Mackey, S.L., (1987) Tail shock produces inhibition as well as sensitization of the siphon-withdrawal reflex of Aplysia — possible behavioral role for presynaptic inhibition mediated by the peptide Phe-Met-Arg-Phe-NH2. Proceedings of the National Academy of Sciences, USA 84, 8730–8734.

    Article  CAS  Google Scholar 

  • Manser, E., Leung, T., Salihuddin, H., Zhao, Z.S., and Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac. Nature 367, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Manser, J., and Wood, W.B. (1990) Mutations affecting embryonic cell migrations in Caenorhabditis elegans. Developmental Genetics 11, 49–64.

    Article  CAS  Google Scholar 

  • Man Song Hing, H.J., Codina, J., Abramowitz, J., and Haydon, P.G. (1992) Microinjection of the alpha-subunit of the G-protein Got, but not Gol, reduces a voltage-sensitive calcium current. Cell Signalling 4, 429–441.

    Article  Google Scholar 

  • Maruyama, I.N., and Brenner, S. (1991) A phorbol ester/diacyglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 88, 5729–5733.

    Article  CAS  Google Scholar 

  • Maule, A.G., Bowman, J.W., Thompson, D.P., Marks, N.J., Friedman, A.R., and Geary, T.G. (1996) FMRFamide-related peptides (FaRPs) in nematodes: occurrence and neuromuscular physiology. Parasitology 113, S119 - S135.

    Article  PubMed  Google Scholar 

  • McBride, J.M., and Hollis, J.P. (1966) Phenomenon of swarming in nematodes. Nature 211, 545–546.

    Article  PubMed  CAS  Google Scholar 

  • McIntire, S.L., Garriga, G., White, J., Jacobson, D., and Horvitz, H.R. (1992) Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8, 307–322.

    Article  CAS  Google Scholar 

  • Mello, C., and Fire, A. (1995) DNA transformation. Methods in Cell Biology 48, 451–482.

    Article  PubMed  CAS  Google Scholar 

  • Mendel, J.E., Korswagen, K.S., Liu, K.S., Hadju-Cronin, Y.M., Simon, M.I., Plasterk, R.H.A., and Sternberg, P.W. (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267, 1652–1655.

    CAS  Google Scholar 

  • Mikoshiba, K., Furuichi, T., and Miyawaki, A. (1994) Structure and function of IP3 receptors. Seminars in Cell Biology 5, 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K.G., Emerson, M.D., and Rand, J.B. (1999) Go alpha and diacylglycerol kinase negatively regulate the Gq alpha pathway in C. elegans. Neuron 24, 323–333.

    Google Scholar 

  • Miller, K.G., Alfonso, A., Nguyen, M., Crowell, J.A., Johnson, C.D., and Rand, J.B. (1996) A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proceedings of the National Academy of Sciences, USA 93, 12593–12598.

    Article  CAS  Google Scholar 

  • Mombaerts, P. (1996) Targeting olfaction. Current Opinion in Neurobiology 6, 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., Vassar, R., Chao, S.K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996) The molecular biology of olfactory perception. Cold Spring Harbor Symposia on Quantitative Biology 61, 135–145.

    Article  CAS  Google Scholar 

  • Mon, I., and Ohshima, Y. (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344–348.

    Google Scholar 

  • Murphy, A.M., and Montell, D.J. (1996) Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. Journal of Cell Biology 133, 617–630.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, F.K., and Riddle, D.L. (1984) Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. Journal of Experimental Zoology 231, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, L.S., Rosoff, M.L., and Li, C. (1998) Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 281, 1686–1690.

    CAS  Google Scholar 

  • Nelson, L.S., Kim, K., Memmott, R.E., and Li, C. (1998) FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Molecular Brain Research 58, 103–111.

    Article  CAS  Google Scholar 

  • Nguyen, M., Alfonso, A., Johnson, C.D., and Rand, J.B. (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535.

    CAS  Google Scholar 

  • Nobes, C., and Hall, A. (1994) Regulation and function of the Rho subfamily of small GTPases. Current Opinion in Genetics and Development 4, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Nobes, C.D., and Hall, A. (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Noh, D.Y., Shin, S.H., and Rhee, S.G. (1995) Phosphoinositide-specific phospholipase-C and mitogenic signaling. Biochimica et Biophysica Acta 1242, 99–113.

    PubMed  Google Scholar 

  • Nonet, M.L., Staunton, J.E., Kilgard, M.P., Fergestad, T., Hartweig, E., Horvitz, H.R., Jorgensen, E.M., and Meyer, B.J. (1997) Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. Journal of Neuroscience 17, 8061–8073.

    CAS  Google Scholar 

  • Nuoffer, C., and Blach, W.E. (1994) GTPases — multifunctional molecular switches regulating vesicular traffic. Annual Review of Biochemistry 63, 949–990.

    Article  PubMed  CAS  Google Scholar 

  • Nurrish, S., Segalat, L., and Kaplan, J.M. (1999) Serotonin inhibition of synaptic transmission: G; decreases the abundance of UNC-13 at releases sites. Neuron 24, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser, A.F., Monck, J.R., Balch, W.E, and Fernandez, J.M. (1992) Exocytotic fusion is activated by Rab3a peptides. Nature 360, 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Odell, G.M., Oster, G., Alberch, P., and Burnside, B. (1981) The mechanical basis of morphogenesis. 1. Epithelial folding and invagination. Developmental Biology 85, 446–462.

    Article  PubMed  CAS  Google Scholar 

  • Padfield, P.J., Balch, W.E., and Jamieson, J.D. (1992) a synthetic peptide of the Rab3A effector domain stimulates amylase release from permeabilized pancreatic acini. Proceedings of the National Academy of Sciences, USA 89, 1656–1660.

    Google Scholar 

  • Parent, C.A., and Devreotes, P.N. (1996) Molecular genetics of signal transduction in Dictyostelium. Annual Review of Biochemistry 65, 411–440.

    Article  CAS  Google Scholar 

  • Park, J.H., Ohshima, S., Tani, T., and Ohshima, Y. (1997) Structure and expression of the gsa-1 gene encoding a G protein a, subunit in Caenorhabditis elegans. Gene 194, 183–190.

    CAS  Google Scholar 

  • Payza, K., and Yang, H.Y.T. (1993) Modulation of neuropeptide-FF receptors by guanine nucleotides and cations in membranes of rat brain and spinal cord. Journal of Neurochemistry 60, 1894–1899.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, A., Stryjek-Kaminska, D., and Zeuzem, S. (1994) Synthetic Rab3A effector domain peptide STIR stimulates inositol 1,4,5-trisphosphate production in various permeabilized cells. Biochemical and Biophysical Research Communications 203, 756–762.

    Article  PubMed  CAS  Google Scholar 

  • Plasterk, R.H.A. (1995) Reverse genetics: from gene sequence to mutant worm. Methods in Cell Biology 48, 59–80.

    Article  PubMed  CAS  Google Scholar 

  • Podbilewicz, B., and White, J.G. (1994) Cell fusions in the developing epithelia of C. elegans. Developmental Biology 161, 408–424.

    CAS  Google Scholar 

  • Ponting, C.P., and Benjamin, D.R. (1996) A novel family of Ras-binding domains. Trends in Biochemical Sciences 21, 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Priess, J.R., and Hirsh, D.I. (1986) Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Developmental Biology 117, 156–173.

    CAS  Google Scholar 

  • Raffa, R.B. (1988) The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides 9, 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Raizen, D.M., and Avery, L. (1994) Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495.

    Article  CAS  Google Scholar 

  • Rand, J.B., and Russell, R.L. (1985) Molecular basis of drug-resistance mutations in C. elegans. Psychopharmacology Bulletin 21, 623–630.

    CAS  Google Scholar 

  • Reuveny, E., Slesinger, P.A., Inlese, J., Morales, J.M., Iniguezlluhi, J.A., Lefkowitz, R.J., Boume, H.R., Jan, Y.N., and Jan, L.Y. (1994) Activation of the cloned muscarinic potassium channel by G protein 1.3y subunits. Nature 370, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, J.E., Davis, W.S., and Jorgensen, E.M. (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neuroscience 2, 959–964.

    Article  CAS  Google Scholar 

  • Riddle, D.L. (1988) The dauer larva. In: W.B. Wood and the Community of C. elegans Researchers (eds.) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 393–412.

    Google Scholar 

  • Riddle, D.L., Swanson, M.M., and Albert, P.S. (1981) Interacting genes in nematode dauer larva formation. Nature 290, 668–671.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J. (1995) Rho-related proteins: actin cytoskeleton and cell cycle. Current Opinion in Genetics and Development 5, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J., and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J., Paterson H.F., Johnston, C.L., Dieckmann, D., and Hall, A. (1992) The small GTPbinding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Roayiae, K., Crump, J.G., Sagasti, A., and Bargmann, C.I. (1998) The Ga protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67.

    Article  Google Scholar 

  • Robertson, H.M. (1998) Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Research 8, 449–463.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M. (2000) The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Research 10, 192–203.

    Article  PubMed  CAS  Google Scholar 

  • Rosoff, M.L., Burglin, T.R., and Li, C. (1992) Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. Journal of Neuroscience 12, 2356–2361.

    CAS  Google Scholar 

  • Rosoff, M.L., Doble, K.E., Price, D.A., and Li, C. (1993) The flp-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 14, 331–338.

    Article  CAS  Google Scholar 

  • Schmidt, C.J., Garen-Fazio, S., Chow, Y.K., and Neer, E.J. (1989) Neuronal expression of a newly identified Drosophila melanogaster G-protein ao subunit. Cell Regulation 1, 125–134.

    PubMed  CAS  Google Scholar 

  • Segalat, L., Elkes, D.A., and Kaplan, J.M. (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267, 1648–1651.

    CAS  Google Scholar 

  • Sengupta, P., Chou, J.C., and Bargmann, C.I. (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909.

    Google Scholar 

  • Sengupta, P., Colbert, H.A., Kimmel, B.E., Dwyer, N., and Bargmann, C.I. (1993) The cellular and genetic basis of olfactory responses in Caenorhabditis elegans. CIBA Foundation Symposia 179, 235–244.

    PubMed  CAS  Google Scholar 

  • Shelton, C.A., Carter, J.C., Ellis, G.C., and Bowerman, B. (1999) The nonmuscle myosin regulatory light chain gene mle-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. Journal of Cell Biology 146, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Shibatohge, M., Kariya, K., Liao, Y.H., Hu, C.D., Watari, Y., Goshima, M., Shima, F., and Kataoka, T. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. Journal of Biological Chemistry 273, 6218–6222.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui, S.S. (1990) Mutations affecting axonal growth and guidance of motor neurons and mechanosensory neurons in the nematode Caenorhabditis elegans. Neuroscience Research 13 (supplt.), 5171–5190.

    Google Scholar 

  • Siddiqui, S.S., and Culotti, J.G. (1991) Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. Journal of Neurogenetics 7, 193–211.

    Article  PubMed  CAS  Google Scholar 

  • Siderovski, D.P., Strockbine, B., and Behe, C.I. (1999) Whither goest the RGS proteins? Critical Reviews in Biochemistry and Molecular Biology 34, 215–251.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Zerial, M. (1993) Rab proteins and the road maps for intracellular transport. Neuron 11, 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Small, S.A., Kandel, E.R., and Hawkins, R.D. (1989) Activity-dependent enhancement of presynaptic inhibition in Aplysia sensory neurons. Science 243, 1603–1606.

    Article  PubMed  CAS  Google Scholar 

  • Snow, B.E., Krumins, A.M., Brothers, G.M., Lee, S.F., Wall,. M.A., Chung, S., Mangion, J., Arya, S., Gilman, A.G., and Siderovski, D.P. (1998) A G protein y subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gß5 subunits. Proceedings of the National Academy of Sciences, USA 95, 13307–13312.

    Article  CAS  Google Scholar 

  • Sogaard, M., Tani, K., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J.E., and Sollner, T. (1994) A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Sollner, T., and Rothman, J.E. (1994) Neurotransmission harnessing fusion machinery at the synapse. Trends in Neurosciences 17, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer, E.L.L., and Durbin, R. (1997) Analysis of protein domain families in Caenorhabditis elegans. Genomics 46, 200–216.

    Article  CAS  Google Scholar 

  • Sternberg, P.W., and Han, M. (1998) Genetics of RAS signaling in C. elegans. Trends in Genetics 14, 466–472.

    Article  CAS  Google Scholar 

  • Steven, R., Kubiseski, T.J., Zheng, H., Kulkarni, S., Mancillas, J., Morales, A.R., Hogue, C.W.V., Pawson, T., and Culotti, J. (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795.

    CAS  Google Scholar 

  • Strittmatter, S.M., Valenzuela, D., Kennedy, T.E., Neer, E.J., and Fishman, M.C. (1990) Go is a major growth cone protein subject to regulation by GAP-43. Nature 344, 836–841.

    Google Scholar 

  • Sulston, J.E., and Horvitz, H.R. (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology 56, 110–156.

    Article  CAS  Google Scholar 

  • Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983) The embryonic cell lieage of the nematode Caenorhabditis elegans. Developmental Biology 100, 64–119.

    Article  CAS  Google Scholar 

  • Sunahara, R.K., Dessauer, C.W., and Gilman, A.G. (1996) Complexity and diversity of mammalian adenylyl cyclases. Annual Review of Pharmacology and Toxicology 36, 461–480.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, M.M., and Riddle, D.L (1981) Critical periods in the development of the C. elegans dauer larva Developmental Biology 84, 27–40.

    CAS  Google Scholar 

  • Tabara, H., Grishok, A., and Mello, C.C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431.

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne, M., and Goodman, C.S. (1996) The molecular biology of axon guidance. Science 274, 1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode Caenorhabditis elegans: a platform for investigating biology. Science 282, 2012–2018.

    Google Scholar 

  • Thomas, J.H. (1990) Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124, 855–872.

    CAS  Google Scholar 

  • Thomas, J.H., Birnby, D.A., and Vowels, J.J. (1993) Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 134, 1105–1117.

    CAS  Google Scholar 

  • Trent, C., Tsung, N., and Horvitz, H.R. (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104, 619–647.

    CAS  Google Scholar 

  • Trinkle-Mulcahy, L., Ichikawa, K., Hartshorne, D.J., Siegman, M.J., and Butler, T.M. (1995) Thiophosphorylation of the 130 kDa subunits is associated with a decreased activity of myosin light-chain phosphatase in alpha-toxin-permeabilized smooth muscle. Journal of Biological Chemistry 270, 18191–18194.

    Article  PubMed  CAS  Google Scholar 

  • Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A., and Bargmann, C.I. (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207–218.

    CAS  Google Scholar 

  • van der Voorn, L., Gebbink, M., Plasterk, R.H.A., and Ploegh, H.L. (1990) Characterization of a G-protein 3-subunit gene from the nematode Caenorhabditis elegans. Journal of Molecular Biology 213, 17–26.

    Article  Google Scholar 

  • Van Dongen, A.M.J., Codina, J., Olate, J., Mattera, R., Johr, R., Birnbaumer, L., and Brown, A.M. (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242, 1433–1437.

    Article  Google Scholar 

  • Volterra, A., and Siegelbaum, S.A. (1988) Role of 2 different guanine nucleotide-binding proteins in the antagonistic modulation of the S-type K+ channel by cAMP and arachidonic acid metabolites in Aplysia sensory neurons. Proceedings of the National Academy of Sciences, USA 85, 7810–7814.

    Article  CAS  Google Scholar 

  • von Mollard, G.F., Stahl, B., Li, C., Sudhof, T.C., and Jahn, R. (1994) Rab proteins in regulated exocytosis. Trends in Biochemical Sciences 19, 164–168.

    Google Scholar 

  • Vowels, J.J., and Thomas, J.H. (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130, 105–123.

    CAS  Google Scholar 

  • Waggoner, L.E., Zhou, G.T., Schafer, R.W., and Schafer, W.R. (1998) Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21, 203–214.

    Article  CAS  Google Scholar 

  • Walsh, D.A., and Van Platten, S.M. (1994) Multiple pathway signal-transduction by the cAMPdependent protein-kinase. FASEB Journal 8, 1227–1236.

    PubMed  CAS  Google Scholar 

  • Wan, C.P., and Lau, B.H.S. (1995) Neuropeptide-Y receptor subtypes. Life Sciences 56, 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.X., Lange, A.B., and Orchard, I. (1995) Coupling of a single receptor to 2 different G-proteins in the signal-transduction of FMRFamide-related peptides. Biochemical and Biophysical Research Communications 212, 531–538.

    Article  CAS  Google Scholar 

  • Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H., and Blumer, K.J. (1996) RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383, 172–175.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Southgate, E., and Durbin, R. (1988) Appendix 2. Neuroanatomy. In: W.B. Wood and the Community of C. elegans Researchers (eds.) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 433–455.

    Google Scholar 

  • White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B 275, 327–348.

    Article  CAS  Google Scholar 

  • White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986) The structure of the nervous system of the nematode C. elegans. Philosophical Transactions of the Royal Society of London B 314, 1–340.

    Article  CAS  Google Scholar 

  • Wickman, K., and Clapham, D.E. (1995a) Ion-channel regulation by G-proteins. Physiological Reviews 75, 865–885.

    PubMed  CAS  Google Scholar 

  • Wickman, K., and Clapham, D.E. (1995b) G-protein regulation of on channels. Current Opinion in Neurobiology 5, 278–285.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, B., Baran, R., and Garriga, G. (1997) Genes that guide growth cones along the C. elegans ventral nerve cord. Development 124, 2571–2580.

    PubMed  CAS  Google Scholar 

  • Wilkie, T.M., and Yokoyama, S. (1994) Evolution of the G protein alpha subunit multigene family. Society of General Physiologists Series 49, 249–270.

    PubMed  CAS  Google Scholar 

  • Wilkie, T.M. (1999) G proteins, chemosensory perception, and the C. elegans genome project. An attractive story. Bioessays 21, 713–717.

    Article  PubMed  CAS  Google Scholar 

  • Wissman, A., Ingles, J., and Mains, P.E. (1999) The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Developmental Biology 209, 111–127.

    Google Scholar 

  • Wissman, A., Ingles, J., McGhee, J.D., and Mains, P.E. (1997) Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes and Development 11, 409–422.

    Google Scholar 

  • Wong, T.M., Greenberg, M.J., and Tse, S.Y.H. (1985) Cardiovascular effects of intraventricular injection of FMRFamide, Met-enkephalin and their common analogs in the rat. Comparative Biochemistry and Physiology 81C, 175–179.

    CAS  Google Scholar 

  • Xu, X., Zeng, W., Popov, S., Berman, D.M., Davignon, I., Yu, K., Yowe, D., Offermanns, S., Muallem, S., and Wilkie, T.M. (1999) RGS proteins determine signaling specificity of Gq-coupled receptors. Journal of Biological Chemistry 274, 3549–3556.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, W., Xu, X., Popov, S., Mukhopadhyay, S., Chidiac, P., Swistok, J., Danho, W., Yagaloff, K.A., Fisher, S.L., Ross, E.M., Muallem, S., and Wilkie, T.M. (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. Journal of Biological Chemistry 273, 34687–34690.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Chou, J.H., Bradley, J., Bargmann, C.I., and Zinn, K (1997) The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proceedings of the National Academy of Sciences, USA 94, 12162–12167.

    Article  CAS  Google Scholar 

  • Zipkin, I.D., Kindt, R.M., and Kenyon, C.J. (1997) Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894.

    CAS  Google Scholar 

  • Zwaal, R.R., Ahringer, J., van Luenen, H.G.A.M., Rushforth, A., Anderson, P., and Plasterk, R.H.A. (1996) G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Zwaal, R.R., Mendel, J.E., Sternberg, P.W., and Plasterk, R.H.A. (1997) Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145, 715–727.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bastiani, C.A., Simon, M.I., Sternberg, P.W. (2004). Control of Caenorhabditis Elegans Behaviour and Development by G Proteins Big and Small. In: Fairweather, I. (eds) Cell Signalling in Prokaryotes and Lower Metazoa. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0998-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0998-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6483-7

  • Online ISBN: 978-94-017-0998-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics