Skip to main content

Causality in Relativistic Multi-Particle Classical Dynamic Systems

Relativistic Classical Dynamics

  • Conference paper
Book cover Causality and Locality in Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 97))

  • 593 Accesses

Abstract

At the present time, the Fokker-Wheeler-Feynman theory of electrodynamics and its generalizations provide the only relativistic alternative to a non-relativistic Lagrangian based classical dynamics theory of multi-particle systems. This formulation has particle interchange and time reversal symmetries and the equations of motion are properly Lorentz covariant. However, these equations of motion contain a central time plus relatively advanced and retarded times for each particle. An insistence on a Newtonian interpretation of the various terms results in a non-causal interpretation of the theory for few particle systems. In order to test the validity of the above interpretation, two classes of double time delay systems are examined. First, a series of three model problems of increasing complexity are studied that have fixed retarded and advanced time delays. All of these models have exact closed form solutions, implying a causal interpretation in which the past both drives the system forward in time and defines an irreversible arrow of time. Second, the Fokker-Wheeler-Feynman theory of electrodynamics and its generalizations are re-examined and found to satisfy this alternate interpretation. It is concluded that these theories are the relativistic counterpart of the classical dynamics description of systems of point particles with fundamental interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sprott, J.C.: Some simple chaotic jerk functions, Am. J. Phys. 65 (1997), 537–543.

    Article  ADS  Google Scholar 

  2. Wheeler, J.A., and Feynman,R.P.: Interaction with the Absorber as the Mechanism of Radiation, Rev. Mod. Phys. 17 (1945), 157–181: Classical Electrodynamics in terms of Direct Interparticle Action, Rev. Mod. Phys. 21 (1949), 425–433.

    ADS  MATH  Google Scholar 

  3. Kerner, E.H.,: Hamiltonian Formulation of Action-at-a-Distance in Electrodynamics, J. Math. Phys. 3 (1962), 35–42: Can the Position variable be a canonical Coordinate in a Relativistic Many-Particle Theory?, J. Math. Phys. 6 (1965), 1218–1227.

    MathSciNet  Google Scholar 

  4. Kennedy, F.J.,: Instantaneous Action-at-a-Distance Formulation of Classical Electrodynamics, J. Math. Phys. 10 (1969), 1349–1362: Hamiltonian formulation of the classical two-charge problem in straight-line approximation, J. Math Phys. 16 (1975), 1844–1856.

    Google Scholar 

  5. Woodcock, H.W., and Havas, P.,: Approximately Relativistic Lagrangians for Classical Interacting Point Particles, Phys. Rev. D 6 (1972), 3422–3444.

    Article  Google Scholar 

  6. Gaida, R.P., Klyuchkovskii, Yu. B., and Tretyak, V.I.,: Lagrangian Classical relativistic mechanics of a system of directly interacting particles. I. Theor. Math. Phys. 44 (1980), 687–697: Lagrangian classical relativistic mechanics of a system of directly interacting particles. H. Theor. Math. Phys. 45 (1980), 963–975.

    MathSciNet  Google Scholar 

  7. Weiss, J.,: Is there action-at-a-distance linear confinement?, J. Math. Phys. 27 (1986), 1015–1022: Action-at-a-distance linear potentials and conformal conservation laws, J. Math. Phys. 27 (1986), 1023–1026.

    Google Scholar 

  8. Scott, T.C.,: The Relativistic Classical and Quantum Mechanical Treatment of the Two-Body Problem, M. Math. thesis (1986), University of Waterloo, Waterloo, Ontario, Canada (unpublished).

    Google Scholar 

  9. Moore, RA., Scott, T.C., and Monagan, M.B.,: Relativistic, Many-Particle Lagrangian for Electromagnetic Interactions, Phys. Rev. Lett. (1987) 59, 525–527: A model for a relativistic, many-particle Lagrangian with electromagnetic interactions, Can. J. Phys. 88 (1988), 206–211.

    Google Scholar 

  10. Moore, R.A., and Scott, T.C.,: A class of physically acceptable, classical, relativistic, many-particle Lagrangians, Can. J. Phys. 66 (1988), 365–368.

    ADS  Google Scholar 

  11. Moore, R.A., Qi, D.W., and Scott, T.C.,: Causality of relativistic many-particle classical dynamics theories, Can. J. Phys. 70 (1992), 772–781.

    ADS  Google Scholar 

  12. Linz, S.J.,: Nonlinear dynamical models and jerky motion, Amer. J. Phys. 65 (1997), 523–527.

    Google Scholar 

  13. Stachel, J., and Havas, P.,: Invariances of approximately relativistic Hamiltonians and the center-of- mass theorem, Phys. Rev. D 13 (1976), 1598–1613.

    Article  Google Scholar 

  14. Coester, F., and Havas, P.,: Approximately relativistic Hamiltonian for interacting particles, Phys. Rev. D 14 (1976), 2556–2569.

    Article  Google Scholar 

  15. Scott, T.C., and Moore, R.A.,: Quantisation of Hamiltonian from High-order Lagrangians, Nucl. Phys. B (Proc. Suppl) 6 (1989), 455–457.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Damour, T., and Schafer, G.,: Redefinition of position variables and the reduction of higher-order Lagrangians, J. Math. Phys. 32 (1991), 127–134.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Scott, T.C.,: Theoretical and Computational Methods towards a Relativistic Quantum-Mechanical Many-Particle Theory, Ph.D. thesis (1990), University of Waterloo, Waterloo, Ontario, Canada (unpublished).

    Google Scholar 

  18. Moore, R.A., and Scott, T.C.,: Quantization of Second-order Lagrangians: Model Problem, Phys. Rev. A 44 (1991) 1477–1484: Quantization of Second-order Lagrangians: The Fokker-Wheeler-Feynman model of electrodynamics. Phys. Rev. A 46 (1992), 3637–3645.

    Google Scholar 

  19. Havas, P.,: The Classical Equations of Motion of Point Particles. I., Phys. Rev. 87 (1952), 309–318: The Classical Equations of Motion of Point Particles. II, Phys. Rev. 91 (1953), 997–1007.

    MathSciNet  MATH  Google Scholar 

  20. Hiida, K., and Okamura, H.,: Gauge Transformation and Gravitational Potentials, Prog. Theor. Phys. 47 (1972), 1743–1757.

    Article  ADS  Google Scholar 

  21. Crater, H.W., and Van Alstine, P.,: Two-body Dirac equations for particles interacting through world scalar and vector potentials, Phys. Rev. D 36 (1987), 3007–3036: Two-body Dirac equations for meson spectroscopy, Phys. Rev D 37 (1988), 1982–2000: Restrictions imposed on relativistic two-body interactions by classical relativistic field theory, Phys. Rev. D 46 (1992), 766–776: Extension of two-body Dirac equations to general covariant interactions through a hyperbolic transformation, J. Math. Phys. 31 (1990), 1998–2014: Structure of Quantum-Mechanical Relativistic Interaction for Spinning Particles, Found. Phys. 24 (1994), 297–328.

    Google Scholar 

  22. Crater, H.W., and Yang, D.,: A covariant extrapolation of the noncovariant two particle Wheeler- Feynman Hamiltonian from the Todorov equation and Dirac’s constraint mechanics, J. Math. Phys. 32 (1991), 2374–2394.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Crater, H.W., Becker, R.L., Wong, C.Y., and Van Alstine, P.,: Nonperturbative solution of two-body Dirac equations for quantum electrodynamics and related field theories, Phys. Rev. D 46 (1992), 5117–5155.

    Google Scholar 

  24. Bijteber, J., and Brockart, J.,: The Few-Body Problem between Quantum Field Theory and Relativistic Quantum Mechanics, World Scientific, Singapore, 1992.

    Google Scholar 

  25. Klein, A., and Dreizler, R.M.,: Alternative Derivation of relativistic two-body equations, Phys. Rev. A 45 (1992), 4340–4345.

    Article  Google Scholar 

  26. Tiemeijer, P.C., and Tjon, J.A.: Meson mass spectrum from relativistic equations in configuration space, Phys. Rev. C 49 (1994), 494–512.

    Google Scholar 

  27. Pais, A., and Uhlenbeck, G.E.,: On Field Theories with Non-Localized Action, Phys. Rev. 79 (1950), 145–165.

    Article  MathSciNet  MATH  Google Scholar 

  28. Katayamo, Y.,: The Theory of the Interaction with Higher Derivatives, Prog. Theor. Phys. 9 (1953), 561–562.

    Article  ADS  Google Scholar 

  29. Marnelius, R.,: Action Principle and Nonlocal Field Theories, Phys. Rev. D 8 (1973), 2472–2495.

    Article  Google Scholar 

  30. Ohta, T., and Kimura, T.,: Derivation of many-body potential among charged particles in the S-matrix method, J. Math. Phys. 33 (1992), 2303–2322.

    Article  MathSciNet  ADS  Google Scholar 

  31. Weyl, H.,: Time, Space, Matter, Dover, New York, 1952.

    Google Scholar 

  32. Utiyama, R., and DeWitt, B.S.,: Renormalization of a Classical Gravitational Field Interacting with Quantized Matter Fields, J. Math. Phys. 3 (1962), 608–618.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Ohta, T., Okamura, H., Kimura, T., and Hiida, K.,: Higher Order Gravitational Potential for Many-Body System, Prog. Theor. Phys. 51 (1974), 1220–1238.

    Article  ADS  Google Scholar 

  34. Stelle, K.S.,: Renormalization of higher-derivative quantum gravity, Phys. Rev. D 16 (1977), 953969.

    Google Scholar 

  35. Fradkin, E.S., and Tseytlin, A.A.,: Renormalizable Asymptotically Free Quantum Theory of Gravity, Nucl. Phys. B 201 (1982), 469–491.

    MathSciNet  Google Scholar 

  36. Schafer, G.,: Acceleration-dependent Lagrangians in General Relativity, Phys. Lett. A 100 (1984), 128–129.

    Article  ADS  Google Scholar 

  37. Ohta, T., and Kimura, T.,: Fokker Lagrangian and Coordinate Condition in General Relativity, Prog. Theor. Phys. 79 (1988), 819–835.

    Article  ADS  Google Scholar 

  38. Saito, Y., Sugaro, R., Ohta, T., and Kimura, T.,: A dynamical formulation of singular Lagrangian system with higher derivatives, J. Math. Phys. 30 (1989), 1122–1132.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Simon, J.Z.,: Stability of flat space, semiclassical gravity, and higher derivatives, Phys. Rev. D 43 (1991), 3308–3316.

    Article  Google Scholar 

  40. Polyakov, A.,: Fine structure of strings, Nucl. Phys. B 268 (1986), 406–412.

    MathSciNet  Google Scholar 

  41. Eliezer, D.A., and Woodard, R.P.,: The Problem of Nonlocality in String Theory, Nucl. Phys. B 325 (1989), 389–469.

    MathSciNet  Google Scholar 

  42. Hata, H.,: Quantization of Non-local Field Theory and String Field Theory, Phys. Lett. B 217 (1989), 438–444.

    Article  ADS  Google Scholar 

  43. Chu, Shu-Yuan,: Statistical Origin of Classical Mechanics and Quantum Mechanics, Phys. Rev. Lett. 71 (1993), 2847–2850.

    Article  ADS  MATH  Google Scholar 

  44. Currie, D.G., Jordan, T.F., and Sudarshar, E.C.G.,: Relativistic Invariance and Hamiltonian Theories of Interacting Particles, Rev. Mod. Phys. 35 (1963), 350–375.

    Article  ADS  Google Scholar 

  45. Cannon, J.T., and Jordan, Tom.,: A Non-Interaction Theorem in Classical Relativistic Hamiltonian Particle Dynamics, J. Math. Phys. 5 (1964), 299–307.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Leutwyler, H.,: A No-interaction Theorem in Classical Relativistic Hamiltonian Particle Mechanics, Nuovo Cimento 37 (1965), 556–567.

    Article  Google Scholar 

  47. Chelkowski, S.,: Physically realistic model of instantaneous predictive relativistic dynamics, Acta Phys. Pol. B 16 (1985), 403–422.

    MathSciNet  Google Scholar 

  48. Feynman, R.P., and Hibbs, A.R.,: Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  49. Moore, RA., and Scott, T.C.,: Causality and quantization of time-delay systems: A model problem, Phys. Rev. A 52 (1995), 1831–1836.

    Article  Google Scholar 

  50. Moore, R.A., and Scott, T.C.,: Causality and quantization of time-delay systems: A two-body model problem, Phys. Rev. A 52 (1995), 4371–4380.

    Article  Google Scholar 

  51. Grasser, H.S.P.,: A Monograph on the General Theory of 2nd Order Parameter Invariant Problems in the Calculus of Variations, University of South Africa, Pretoria, 1967.

    Google Scholar 

  52. Rund, H., The Hamilton-Jacobi Theory in the Calculus of Variations, 2nd ed., Van Nostrand, London, 1973.

    MATH  Google Scholar 

  53. DeLeon, M., and Rodrigues, R.P.,: Generalized Classical Mechanics and Field Theory, Elsevier, New York, 1985.

    Google Scholar 

  54. Schild, A.,: Electromagnetic Two-Body Problem, Phys. Rev. 131 (1963), 2762–2766.

    Article  MathSciNet  MATH  Google Scholar 

  55. Hill, R.N.,: Instantaneous Action-at-a-Distance in Classical Relativistic Mechanics, J Math. Phys. 8 (1967), 201–220: Instantaneous Interaction Relativistic Dynamics for Two Particles in One Dimension, J. Math. Phys. 11 (1970), 1918–1937.

    Article  ADS  MATH  Google Scholar 

  56. Anderson, C.M., and Von Baeyer, H.C.,: Solutions of the Two-Body Problem in Classical Action-at-aDistance Electrodynamics: Straight-Line Motion, Phys. Rev. D 5 (1972), 2470–2476.

    Article  Google Scholar 

  57. Scott, T.C., Moore, RA., and Monagan, M.B.,: Resolution of Many Particle Electrodynamics by Symbolic Manipulation, Comp. Phys. Comm. 52 (1989), 261–281.

    Article  MathSciNet  ADS  Google Scholar 

  58. Stephas, P.,: Analytic solutions for Wheeler-Feynman interaction: Two bodies in straight-line motion, J. Math. Phys. 33 (1992), 612–624.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Moore, R.A. (1998). Causality in Relativistic Multi-Particle Classical Dynamic Systems. In: Hunter, G., Jeffers, S., Vigier, JP. (eds) Causality and Locality in Modern Physics. Fundamental Theories of Physics, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0990-3_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5092-2

  • Online ISBN: 978-94-017-0990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics