Skip to main content

Transgenic potato plants resistant to viruses

  • Chapter
Breeding for Disease Resistance

Part of the book series: Developments in Plant Pathology ((DIPP,volume 1))

  • 304 Accesses

Summary

Traditional potato breeding is a laborious process in which, by intercrossing, valuable traits from different parental clones are combined in a progeny genotype. Depending on the availability of genes, molecular techniques can be used to add specific genes to existing cultivars that, although otherwise satisfactory, lack a few commercially important traits. For virus resistance the gene for the coat protein of a given virus transplanted into the genome of the plant renders the plant resistant to that virus. In conferring such resistance to potato varieties it proved to be possible to preserve their intrinsic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beemster, A.B.R., J.A. de Bokx, 1987. Survey of properties and symptoms, pp. 84–140. In: J.A. de Bokx, J.P.H. van der Want (Eds.), Viruses of potatoes and seed-potato production, 2nd edition. PUDOC, Wageningen, The Netherlands.

    Google Scholar 

  • Cuozzo, M., K.M. O’Connell, W. Kaniewski, R.-X. Fang, N.-H. Chua, N.E. Turner, 1988. Viral protection in trans-genic plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio-Technology 6: 549–557.

    Article  CAS  Google Scholar 

  • Does, M.P., B.M.M. Dekker, M.J.A. de Groot, R. Offringa, 1991. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverted PCR. Plant Mol. Biol. 17: 151–153.

    Google Scholar 

  • Gielen, J.J.L., P. de Haan, A.J. Kool, D. Peters, M.Q.J.M. van Grinsven, R. Goldbach, 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio-Technology 9: 1363–1367.

    Article  CAS  Google Scholar 

  • Harris, P.M. (Ed.), 1978. The Potato Crop: The Scientific Basis for Improvement. Chapman and Hall, London, UK.

    Google Scholar 

  • Hemenway, C., R.-X. Fang, W. Kaniewski, N.-H. Chua, N.E. Turner, 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J 7: 1273–1280.

    PubMed  CAS  Google Scholar 

  • Hoekema, A., M.J. Huisman, L. Molendijk, P.J.M. Van den Elzen, B.J.C. Cornelissen, 1989. The genetic engineering of two commercial potato cultivars for resistance to potato virus X. Bio-Technology 7: 273–278.

    Article  Google Scholar 

  • Houwing, A., R. Suk, B. Ros, 1986. Generation of light-sprouts suitable for potato variety identification by means of artificial light. Acta Hortic. 182: 359–363.

    Google Scholar 

  • Huisman, M.J., H.J.M. Linthorst, J.F. Bol, B.J.C. Cornelis-sen, 1988. The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J. Gen. Virol. 69: 1789–1798.

    Google Scholar 

  • Jongedijk, E., A.A.J.M. De Schutter, T. Stolte, P.J.M. Van den Elzen, B.J.C. Cornelissen, 1992. Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Bio-Technology 10: 422–429.

    Article  PubMed  CAS  Google Scholar 

  • Kaniewski, W., C. Lawson, B. Sammons, L. Haley, J. Hart, X. Delannay, N.E. Turner, 1990. Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y. Bio-Technology 8: 750–754.

    Article  Google Scholar 

  • Kawchuk, L.M., R.R. Martins, J. McPherson, 1991. Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Mol. Plant-Microbe Interact. 4: 254–261.

    Google Scholar 

  • Lawson, C., W. Kaniewski, L. Haley, R. Rozman, C. Newell, P. Sanders, N.E. Tumer, 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio-Technology 8: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., R.L. Philips, 1988. The chromosomal basis of soma-clonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 413–437.

    Google Scholar 

  • Ling, K., S. Namba, C. Gonsalves, J.L. Slightom, D. Gonsalves, 1991. Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio-Technology 9: 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.E.F., 1981. Plant Virology. Academic Press, New York.

    Google Scholar 

  • Nejidat, A., R.N. Beachy, 1990. Transgenic tobacco plants expressing a tobacco mosaic virus coat protein gene are resistant to some tobamoviruses. Mol. Plant-Microbe Interact. 3: 247–251.

    Google Scholar 

  • Nelson, R.S., S.M. McCormick, X. Delannay, P. Dubé, J. Layton, E.J. Anderson, M. Kaniewska, R.K. Proksch, R.B. Horsch, S.G. Rogers, R.T. Fraley, R.N. Beachy, 1988. Virus tolerance, plant growth, and field performance of trans-genic tomato plants expressing coat protein from tobacco mosaic virus. Bio-Technology 6: 403–409.

    Article  Google Scholar 

  • Potter, R., M.G.K. Jones, 1991. An assessment of genetic stability of potato in vitro by molecular and phenotypic analysis. Plant Science 76: 239–248.

    Article  CAS  Google Scholar 

  • Powell Abel, P., R.S. Nelson, B. De, N. Hoffman, S.G. Rogers, R.T. Fraley, R.N. Beachy, 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Article  Google Scholar 

  • Powell Abel, P., P.R. Sanders, N.E. Turner, R.T. Fraley, R.N. Beachy, 1990. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175: 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Robaglia, C., M. Durand-Tardif, M. Tronchet, G. Boudazin, S. Astier-Manifacier, R., F. Casse-Delbart, 1989. Nucleotide sequence of potato virus Y (N strain) genomic RNA. J. Gen. Virology 70: 935–947.

    Google Scholar 

  • Rochow, W.F., F.A. Ross, 1955. Virus multiplication in plants double infected with potato viruses X and Y. Virology 1: 10–27.

    Article  PubMed  CAS  Google Scholar 

  • Sheerman, S., M.W. Bevan, 1988. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Rep. 7: 13–16.

    Article  Google Scholar 

  • Stark, D., R.N. Beachy, 1989. Protection against potyvirus infection in transgenic plants: evidence for broad spectrum resistance. Bio-Technology 7: 1257–1262.

    Google Scholar 

  • UPOV (International union for the protection of new varieties of plants), 1986. Guidelines for the conduct of tests for dis- tinctness, homogeneity and stability of potato (Solanum tuberosum).

    Google Scholar 

  • Van Dun, C.M.P., J.F. Bol, 1988. Transgenic tobacco plants accumulating tobacco rattle virus coat protein resist infection with tobacco rattle virus and pea early browning virus. Virology 167: 649–652.

    Article  PubMed  Google Scholar 

  • Van Dun, C.M.P., B. Overduin, L. Van Vloten-Doting, J.F. Bol, 1988. Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not cross-protect against alfalfa mosaic virus infection. Virology 164: 383–389.

    Article  PubMed  Google Scholar 

  • Van der Krol, A.R., P.E. Lenting, J. Veenstra, I.M. van der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol, A.R. Stuitje, 1988. An antisense chalcone synthase gene in trans-genic plants inhibits flower pigmentation. Nature 333: 866–869.

    Article  Google Scholar 

  • Van der Wilk, F., M.J. Huisman, B.J.C. Cornelissen, H. Hut-tinga, R. Goldbach, 1989. Nucleotide sequence and organization of potato leafroll virus genomic RNA. FEBS Lett. 245: 51–56.

    Article  PubMed  Google Scholar 

  • Van der Wilk, F., D. Posthumus-Lutke Willink, M.J. Huisman, H. Huttinga, R. Goldbach, 1991. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection. Plant Mol. Biol. 17: 431–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huisman, M.J., Cornelissen, B.J.C., Jongedijk, E. (1992). Transgenic potato plants resistant to viruses. In: Johnson, R., Jellis, G.J. (eds) Breeding for Disease Resistance. Developments in Plant Pathology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0954-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0954-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4124-1

  • Online ISBN: 978-94-017-0954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics