Skip to main content

Notes on Black Hole Fluctuations and Back-Reaction

  • Chapter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 100))

Abstract

The idea of viewing a black hole (particle detector) interacting with a quantum field as a dissipative system, and the Hawking [1]- Unruh [2] radiation as a manifestation of a fluctuction-dissipation relation was first proposed by Candelas and Sciama [3, 4]. Even though, as we will soon see, the fluctuations in the thought of these earlier authors are not the correct ones and the relations proposed were not really addressing the back-reaction of quantum fields in a classical black hole spacetime, the idea remains attractive. Indeed one of us (BLH) found it so attractive that he launched a systematic investigation into the statistical mechanical properties of particle/spacetime and quantum field interactions. This involved the introduction of statistical mechanical ideas such as quantum open sytems [5] and field-theoretical methods such as the influence functional [6] and Schwinger-Keldysh formalisms [7] for the establishment of a quantum statistical field theory in curved spacetime (for a review, see [8, 9]). It was found that the back-reaction of quantum fields (through processes like particle creation) on a classical background spacetime can be described by an Einstein-Langevin equation [10], which is a generalization of the semiclassical Einstein equation to include stochastic sources due to created particles. Indeed it was also found from first principles that the back-reaction can be encapsulated in the form of a Fluctuation-Dissipation Relation (FDR) [12, 13], which takes into account the mutual influence of the quantum field and the background spacetime (or detector, in the case of Unruh radiation). We expect it to hold also for black hole systems, both in the familiar static condition where black hole thermodynamics based on the Bekenstein-Hawking relation was constructed, and for dynamical collapse problems. This is the major theme in our current program of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Hawking, Nature 248, 30 (1974); Com. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. G. Unruh, Phys. Rev. D14, 3251 (1976).

    Article  ADS  Google Scholar 

  3. P. Candelas and D. W. Sciama, Phys. Rev. Lett. 38, 1372 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  4. D. W. Sciama, in Relativity, Quanta and Cosmology - Centenario di Einstein ed. F. DeFinis (Editrici Giunti Barbera Universitaria, Firenze, Itay, 1979). D. Sciama, P. Candelas and D. Deutsch, Adv. Phys. 30, 327 (1981). D. J. Raine and D. W. Sciama, Class. Quantum Gray. 14, A325 (1997).

    Google Scholar 

  5. See, e.g., E. B. Davies, The Quantum Theory of Open Systems (Academic Press, London, 1976); K. Lindenberg and B. J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems (VCH Press, New York, 1990 ); U. Weiss, Quantum Dissipative Systems ( World Scientific, Singapore, 1993 ).

    Google Scholar 

  6. R. Feynman and F. Vernon, Ann. Phys. (NY) 24, 118 (1963). R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, (McGraw - Hill, New York, 1965). A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983). H. Grabert, P. Schramm and G. L. Ingold, Phys. Rep. 168, 115 (1988). B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); D47, 1576 (1993).

    Google Scholar 

  7. J. Schwinger, J. Math. Phys. 2 (1961) 407; P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1 (1963), 4, 12 (1963). L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Engl. trans. Sov. Phys. JEPT 20, 1018 (1965)]; G. Zhou, Z. Su, B. Hao and L. Yu, Phys. Rep. 118, 1 (1985); Z. Su, L. Y. Chen, X. Yu and K. Chou, Phys. Rev. B37, 9810 (1988); B. S. DeWitt, in Quantum Concepts in Space and Time ed. R. Penrose and C. J. Isham (Claredon Press, Oxford, 1986); R. D. Jordan, Phys. Rev. D33, 44 (1986). E. Calzetta and B. L. Hu, Phys. Rev. D35, 495 (1987).

    Google Scholar 

  8. B. L. Hu, Physica A158, 399 (1979).

    Google Scholar 

  9. B. L. Hu, Quantum Statistical Fields in Gravitation and Cosmology in Proc. Third International Workshop on Thermal Field Theory and Applications,eds. R. Kobes and G. Kunstatter (World Scientific, Singapore, 1994) gr-gc/9403061.

    Google Scholar 

  10. B. L. Hu and A. Matacz, Phys. Rev. D51, 1577 (1995).

    ADS  Google Scholar 

  11. E. Calzetta and B. L. Hu, Phys. Rev. D49, 6636 (1994).

    ADS  Google Scholar 

  12. B. L. Hu and S. Sinha, Phys. Rev. D51, 1587 (1995).

    MathSciNet  ADS  Google Scholar 

  13. A. Raval, B. L. Hu and J. Anglin, Phys. Rev. D 53, 7003 (1996).

    Article  ADS  Google Scholar 

  14. A. Campos and E. Verdaguer, Phys. Rev. D53, 1927 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Raval, B. L. Hu and D. Koks, Phys. Rev. D 55, 4795 (1997).

    Article  ADS  Google Scholar 

  16. B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); D 47, 1576 (1993).

    Google Scholar 

  17. M. Gell-Mann and J. B. Hartle, Phys. Rev. D47, 3345 (1993).

    MathSciNet  ADS  Google Scholar 

  18. E. Mottola, Phys. Rev. D33, 2136 (1986).

    MathSciNet  ADS  Google Scholar 

  19. C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (W. H. Freeman and Company, New York, 1970 ).

    Google Scholar 

  20. E. M. Lifshitz, Zh. Eksp. Teor. Phys. 16 587 (1946) [J. Phys. USSR 10 116 (1946)].

    Google Scholar 

  21. T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957); C. V. Vishveshwara, Phys. Rev. D1, 2870 (1970); F. J. Zerrili, Phys. Rev. D2, 2141 (1970).

    Google Scholar 

  22. S. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972) S. Chandrasekhar, The Mathematical Theory of Black Holes ( Oxford University Press, Oxford, 1992 ).

    Google Scholar 

  23. G. E. Tauber, Tensor 1, (1970).

    Google Scholar 

  24. L. Parker, Phys. Rev. 183, 1057 (1969); R. U. Sexl and H. K. Ubantke, Phys. Rev. 179, 1247 (1969); Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. Pis’ma Red. 12, 443 (1970) [JETP Lett.32, 307 (1970)]; B. L. Hu, Phys. Rev. D 9, 3263 (1974).

    Google Scholar 

  25. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space ( Cambridge University Press, Cambridge, 1982 ).

    Book  MATH  Google Scholar 

  26. L. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974) [Sov. Phys.- JETP 40, 409 (1975)].

    Google Scholar 

  27. L. Ford and L. Parker, Phys. Rev. D16, 1601 (1977).

    MathSciNet  ADS  Google Scholar 

  28. Ya. Zel’dovich and A. Starobinsky, Zh. Eksp. Teor. Fiz 61, 2161 (1971) [Sov. Phys.JETP 34, 1159 (1971)]; JETP Lett. (1977) B. L. Hu and L. Parker, Phys. Lett. 63A, 217 (1977); Phys. Rev. D17, 933 (1978); F. V. Fischetti, J. B. Hartle and B. L. Hu, Phys. Rev. D20, 1757 (1979); J. B. Hartle and B. L. Hu, Phys. Rev. D20, 1772 (1979); 21, 2756 (1980); A. A. Starobinsky, Phys. lett. 91B, 99 (1980); B. L. Hu, Phys. Lett. 103B, 331 (1981); P. A. Anderson, Phys. Rev. D28, 271 (1983); D29, 615 (1984) E. Calzetta and B. L. Hu, Phys. Rev. D35, 495 (1987).

    Google Scholar 

  29. J. M. Bardeen, Phys. Rev. Lett. 46, 382 (1981); P. Hajicek and W. Israel, Phys. Lett. 80A, 9 (1980); J. W. York, J.., Phys. Rev. D31, 775 (1986).

    Google Scholar 

  30. B. S. De Witt, Phys. Rep. C19, 295 (1975).

    Article  ADS  Google Scholar 

  31. S. A. Fulling and L. Parker, Ann. Phys. 87, 176 (1974).

    Article  ADS  Google Scholar 

  32. E. Calzetta, A. Campos, and E. Verdaguer, Phys. Rev. D56, 2163 (1997).

    ADS  Google Scholar 

  33. L. H. Ford and N. F. Svaiter, Phys. Rev. D56, 2226 (1997).

    MathSciNet  ADS  Google Scholar 

  34. A. Casher et al, Black Hole Fluctuations hep-th/9606016.

    Google Scholar 

  35. R. D. Sorkin, How Rinkled is the Surface of the Black Hole? gr-gc/9701056.

    Google Scholar 

  36. B. P. Jenson, J. G. McLaughlin and A. C. Ottewill, Phys. Rev. D51, 5676 (1995).

    MathSciNet  ADS  Google Scholar 

  37. J. W. York, Jr., Phys. Rev. D28, 2929 (1983); D31, 775 (1985); D33, 2092 (1986).

    ADS  Google Scholar 

  38. P. R. Anderson, W. A. Hiscock and D. A. Samuel, Phys. Rev. Lett. 70, 1739 (1993); Phys. Rev. D51, 4337 (1995); W. A. Hiscock, S. L. Larson and P. A. Anderson, Phys. Rev. D56, 3571 (1997).

    Google Scholar 

  39. J. B. Hartle and S. W. Hawking, Phys. Rev. D13, 2188 (1976).

    ADS  Google Scholar 

  40. G. Gibbons and M. J. Perry, Proc. Roy. Soc. Lon. A358, 467 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Campos, B. L. Hu and A. Raval, Fluctuation-Dissipation Relation for a Quantum Black Hole in Quasi-Equilibrium with its Hawking Radiation (in preparation).

    Google Scholar 

  42. B. L. Hu, N. Phillips and A. Raval, Fluctuations of the Energy Momentum Tensor of a Quantum Field in a Black Hole Spacetime (in preparation).

    Google Scholar 

  43. J. M. Bardeen, Phys. Rev. Lett. 46, 382 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Parentani and T. Piran, Phys. Rev. Lett. 73, 2805 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. S. Massar, Phys. Rev. D 52, 5857 (1995).

    Google Scholar 

  46. J. B. Hartle and S. W. Hawking, Commun. Math. Phys. 27, 283 (1973).

    MathSciNet  ADS  Google Scholar 

  47. S. W. Hawking, in Black Holes, edited by B. S. DeWitt and C. DeWitt ( Gordon and Breach, New York, 1973 ).

    Google Scholar 

  48. B. L. Hu, A. Raval and S. Sinha, Back-reaction of a Radiating Quantum Black Hole and Fluctuation-Dissipation Relation (in preparation).

    Google Scholar 

  49. J. D. Bekenstein, in Quantum Theory of Gravity, edited by S. M. Christensen ( Adam Hilger, Bristol, 1984 ).

    Google Scholar 

  50. G. ‘tHooft, Nucl. Phys. B256, 727 (1985), B335, 138 (1990); C. R. Stephens, G. ‘tHooft and B. F. Whiting, C.ass. Quant. Gray. 11, 621 (1994).

    Google Scholar 

  51. S. Bose, J. Louko, L. Parker, and Y. Peleg, Phys. Rev. D 53, 5708 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  52. B. L. Hu, J. Louko, N. Phillips and J. Simon, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hu, B.L., Raval, A., Sinha, S. (1999). Notes on Black Hole Fluctuations and Back-Reaction. In: Iyer, B.R., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0934-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0934-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5121-9

  • Online ISBN: 978-94-017-0934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics