Skip to main content

Stability of Black Holes

Including reflections on the study of perturbations of black hole spacetimes

  • Chapter
Book cover Black Holes, Gravitational Radiation and the Universe

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 100))

Abstract

There is often something to be learned from a look back in history. From a current point of view, most would argue that our methods have become more sophisticated over the years. I would contend, and as you will surely see here, it is our problems which have become more sophisticated over the years, and our methods have changed so that we can continue to answer them. I doubt if this trend will alter substantially. Rather, I suggest that new challenges will keep rising to the fore. Let me give a recent, specific example1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chandrasekhar, The Mathematical Theory of Black Holes, ( OUP, Oxford, 1983 ).

    MATH  Google Scholar 

  2. J. A. Wheeler, “Geons”, Phys. Rev., 97, 511 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. Regge and J. A. Wheeler, Phys. Rev., 108, 1063 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. C. V. Vishveshwara, Phys. Rev. D., 10, 2870 (1970).

    Article  ADS  Google Scholar 

  5. F. J. Zerilli, Phys. Rev. Lett., 24, 737 (1970).

    Article  ADS  Google Scholar 

  6. V. Moncrief, Ann. Phys., 88, 323 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  7. U. H. Gerlach and U. K. Sengupta, Phys. Rev. D., 19, 2268 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  8. E.T. Newman and R. Penrose, J. Math. Phys., 3, 566 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Geroch, A. Held and R. Penrose, J. Math. Phys., 14, 874 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Kamran, Contributions to the Study of the Separation of Variables and Symmetry Operators for Relativistic Wave Equations on Curved Spacetime, Ph. D. Thesis, University of Waterloo (1984).

    Google Scholar 

  11. J. M. Bardeen and W. H. Press, J. Math. Phys., 14, 7 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  12. S. A. Teukolsky, Phys. Rev. Lett., 29, 1114 (1972).

    Article  ADS  Google Scholar 

  13. Richard H. Price, Phys. Rev. D., 5, 2419 (1972).

    Article  MathSciNet  Google Scholar 

  14. Richard H. Price, Phys. Rev. D., 5, 2439 (1972).

    Article  MathSciNet  Google Scholar 

  15. S. Chandrasekhar, Proc. Roy. Soc. Lond. A., 343, 289 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Chandrasekhar and S. Detweiler, Proc. R. Soc. Lond. A., 344, 441 (1975).

    Article  ADS  Google Scholar 

  17. J. M. Cohen and L. S. Kegeles, Phys. Lett., 54A, 5 (1975). See also, Phys. Rev. D., 10, 1070 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  18. P. L. Chrzanowski, Phys. Rev. D., 11, 2042 (1975).

    Article  ADS  Google Scholar 

  19. S. Chandrasekhar, in §79–96 of Ref. [1], gives a coherent account of his own earlier work.

    Google Scholar 

  20. R. M. Wald, Phys. Rev. Lett., 41, 203 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Campanelli and C. Lousto, “The Imposition of Initial Data in the Teukolsky Equation”, University of Utah e-print e-print, gr-qc/9711008 (1997). See also M. Campanelli, W. Krivan and C. Lousto, “The Imposition of Initial Data in the Teukolsky Equation II: Numerical Comparison With the Zerilli-Moncrief Approach to Black Hole Perturbations”, University of Utah e-print e-print, gr-qc/9801067 (1998).

    Google Scholar 

  22. R. M. Wald, J. Math. Phys., 20, 1056 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  23. B. S. Kay and R. M. Wald, Class. Quantum Gray., 4, 893 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Dimock and B. S. Kay, Ann. Phys., 175, 366 (1987). See footnote 13 and Lemma 5.10.

    Google Scholar 

  25. W. T. Zaumen, Nature, 247, 530 (1974). G. W. Gibbons, Comm. Math. Phys., 44, 245 (1975). B. Carter, Phys. Rev. Lett., 33, 558 (1974).

    Google Scholar 

  26. V. Moncrief, Phys. Rev. D., 9, 2707 (1974) and Phys. Rev. D., 10, 1057 (1974). See also, Phys. Rev. D., 12, 1526 (1975).

    Google Scholar 

  27. D. M. Chitre, Phys. Rev. D., 13, 2713 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  28. C. H. Lee, J. Math. Phys., 17, 1226 (1976).

    Google Scholar 

  29. J. Jezierski, “Energy and Angular Momentum of the Weak Gravitational Waves on the Schwarzschild Background - Quasilocal Gauge-Invariant Formulation”, University of Warsaw e-print, gr-qc/9801068 (1998).

    Google Scholar 

  30. K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, KI. Math.-Phys. Tech., 189–196 (1916)

    Google Scholar 

  31. R. P. Kerr, Phys. Rev. Lett., 11, 237 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. B. Carter, Comm. Math. Phys., 10, 280 (1968). See also, “Black Hole Equilibrium States” in Black Holes, eds C. DeWitt and B. S. DeWitt ( Gordon and Breach, New York, 1973 ).

    Google Scholar 

  33. S. A. Teukolsky, Astrophys. J., 185, 635 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  34. W. H. Press and S. A. Teukolsky, Astrophys. J., 185, 649 (1973); A. A. Starobinsky and S. M. Churilov, Zh. Exp. i. Theoret. Fix., 65, 3 (1973), translated in Soviet Phys. JETP, 38, 1 (1974).

    ADS  Google Scholar 

  35. R. M. Wald, J. Math. Phys., 14, 1453 (1973).

    Article  ADS  Google Scholar 

  36. S. A. Teukolsky and W. H. Press, Astrophys. J., 193, 443 (1974).

    Article  ADS  Google Scholar 

  37. S. Chandrasekhar and S. Detweiler, Proc. Roy. Soc. A., 345, 145 (1975), and Proc. Roy. Soc. A., 350, 165 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  38. B. F. Whiting, J. Math. Phys., 30, 1301 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. B. F. Whiting, Proc. Fifth Marcel Grossman Meeting, held in Perth, Western Australia, August 8–13, 1988, eds. D. G. Blair and M. J. Buckingham, 1207 ( World Scientific, Singapore, 1989).

    Google Scholar 

  40. S. Persides, J. Math. Phys., 14, 1017 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  41. E. L. Ince, Ordinary Differential Equations, Ch. VIII ( Dover, New York, 1956 ).

    Google Scholar 

  42. R. M. Wald, Phys. Rev. D., 48, R3427 (1993). See also, V. Iyer and R. M. Wald, Phys. Rev. D., 50, 846 (1994), and Phys. Rev. D., 52, 4430 (1995).

    Google Scholar 

  43. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Ch. 10 ( McGraw-Hill, New York, 1965 ).

    Google Scholar 

  44. S. W. Hawking, Phys. Rev. D., 13, 191 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  45. J. W. York, Phys. Rev. D., 33, 2092 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  46. B. F. Whiting and J. W. York, Phys. Rev. Lett., 61, 1336 (1988).

    Article  ADS  Google Scholar 

  47. J. Louko and B. F. Whiting, Class. Quantum Gray., 9, 457 (1992), and J. Melmed and B. F. Whiting, Phys. Rev. D., 49, 907 (1994).

    Article  MathSciNet  Google Scholar 

  48. J. Louko and B. F. Whiting, Phys. Rev. D., 51, 5583 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whiting, B.F. (1999). Stability of Black Holes. In: Iyer, B.R., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0934-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0934-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5121-9

  • Online ISBN: 978-94-017-0934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics