Skip to main content
  • 610 Accesses

Abstract

Gene therapy has recently received attention as a novel strategy for the correction of human disease at the genetic level. Several methods of transferring genes into somatic mammalian cells have been developed and have led to a range of gene therapy clinical trials for both inherited and acquired disorders. The majority of clinical trials have used viral vectors of animal origin to mediate gene transfer, with retroviruses, adenoviruses and adeno-associated viruses constituting the vehicles of choice. While the principle of gene therapy has been proven, with appropriate therapeutic responses being noted, its potential has not yet been realised in large scale clinical trials. Critical areas for future development remain in the design of more efficient, safer, vectors for gene delivery. Viral vectors are currently undergoing extensive modifications to produce vectors custom-made for particular clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varmus, H. (1988). Retroviruses. Science, 240, 1427–1435.

    CAS  Google Scholar 

  2. Anderson, W.F. (1992). Human gene therapy. Science, 256, 808–813.

    Article  CAS  Google Scholar 

  3. Eglitis, M.A. and Anderson, W.F. (1988). Retroviral vectors for introduction of genes into mammalian cells. Biotechniques, 6, 608–614.

    CAS  Google Scholar 

  4. Tolstoshew, P. and Anderson, W.F. (1990). Gene expression using retroviral vectors. Current Opinion in Biotechnology, 1, 55–61.

    Article  Google Scholar 

  5. Robbins, P.D. et al. (1998). Viral vectors for gene therapy. Trends in Biotechnology, 16, 35–40.

    Article  CAS  Google Scholar 

  6. Miller, D. G. et al. (1990). Gene transfer by retrovirus vectors occurrs only in cells that are actively replicating at the time of infection. Molecular and Cellular Biology, 10, 4239–4242.

    CAS  Google Scholar 

  7. Londau, N. et al. (1991). Pseudotyping with human T-cell leukemia virus type 1 broadens the H1V-1 host range. Journal of Virology, 65, 162–169.

    Google Scholar 

  8. Parolin, C. and Palu, G. (1997). HIV-1 vectors for gene therapy. Minerva Biotechnology, 9, 139–147.

    Google Scholar 

  9. Yu, H. et al. (1996). Inducible human immunedeficiency virus type 1 packaging cell lines. Journal of Virology, 70, 4530–4537.

    CAS  Google Scholar 

  10. Zufferey, R. et al. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in-vivo. Nature Biotechnology, 15, 871–875.

    Article  CAS  Google Scholar 

  11. Akkina, R.K. et al. (1996). High efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein. Journal of General Virology, 70, 2581–2585.

    CAS  Google Scholar 

  12. Leppard, K.- N. (1997). E4 gene function in adenovirus, adenovirus vector and adenoassociated virus infections. Journal of General Virology, 78, 2131–2138.

    CAS  Google Scholar 

  13. Bout, A (1997). PER. C6: a novel packaging cell line for RCA-free production of EI-deleted recombinant adenoviral vectors. Cancer Gene Therapy, 4, 324.

    Google Scholar 

  14. Shabram, P.W. (1997). Analytical anion–exchange HPLC of recombinent type–5 adenoviral particles. Human Gene Therapy, 8, 453–465.

    Article  CAS  Google Scholar 

  15. Clesham, G.J. (1998). High adenoviral loads stimulate NFKB-dependent gene expression in human vascular smooth muscle cells. Gene therapy, 5, 174–180.

    Article  CAS  Google Scholar 

  16. Snyder, R. et al. (1996). Production of recombinant adeno-associated viral vectors. In: Dracopoli, N., Haines, J., Kref, B., Muir, D., (Eds) Current protocols in Human Genetics, pp 12.1.1–12. 1. 23. John Wiley and Sons Publisher, New York.

    Google Scholar 

  17. Halbert, C.L. et al. (1995). Adeno–associated virus vectors transduce primary cells much less efficiently than immortalised cells. Journal of Virology, 69, 1473–1478.

    CAS  Google Scholar 

  18. Salvetti, A. et al. (1998). Factors influencing recombinant Adeno-Associated virus production. Human Gene Therapy, 9, 695–706.

    Article  CAS  Google Scholar 

  19. Dobson, A.T. et al. (1990). A latent non-pathogenic HSV–1–derived vector stably expresses p-galactosidase in mouse neurons. Neuron, 5, 353–360.

    Article  CAS  Google Scholar 

  20. Glorioso, J.C. et al. (1995). Development and application of herpes simplex virus vectors for human gene therapy. Annual review of microbiology, 49, 675–710.

    Article  CAS  Google Scholar 

  21. Peplinski, G. R. et al. (1995). Construction and expression in tumuor cells of a recombinant vaccinia virus encoding human interlukin-1 beta. Annual Surgical Oncology, 2, 151–159.

    Article  CAS  Google Scholar 

  22. Wilkinson, G. W. and Borysiewicz, L. K., (1995). Gene Therapy and Viral Vaccination: The interface. British Medical Bulletin, 51, 205–216.

    CAS  Google Scholar 

  23. Noguiez-Hellin, P. et al. (1996). Plasmoviruses: NonviraUviral vectors for gene therapy. Proceedings of the National Academy of Sciences, USA., 93, 4175–4180.

    Article  CAS  Google Scholar 

  24. Han, J.S. et al. (1998). A method of limited replication for the efficient in vivo delivery of adenovirus to cancer cells. Gene Therapy, 9, 1209–1216.

    Article  CAS  Google Scholar 

  25. Liebert, M.A. (1998). Cell-specific targeting with retroviral vectors. Human Gene Therapy, 9, 767–770.

    Article  Google Scholar 

  26. Schwarzenberger, P. et al. (1996). Targeted gene transfer to human hematopoietic progenitor cell lines through the C-kit receptor. Blood, 87, 472–478.

    CAS  Google Scholar 

  27. Konishi, H. et al. (1998). Targeted strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody. Human Gene Therapy, 9, 235–248.

    Article  CAS  Google Scholar 

  28. Cristiano, R.J. et al. (1993). Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilising a conjugated adenovirus-DNA complex. Proceedings of the National Academy of Sciences, USA., 90, 11548–11552.

    Article  CAS  Google Scholar 

  29. Curiel, D.T. et al. (1992). High-efficiency gene transfer mediated by adenovirus coupled to DNA-polyly sine complexes. Human Gene Therapy, 3, 147–154.

    Article  CAS  Google Scholar 

  30. Kosahara, N. et al. (1994). Tissue-specific targeting of rectroviral vectors through ligand-receptor interactions. Science, 266, 1373–1376.

    Article  Google Scholar 

  31. Walther, W. and Stem, U. (1996). Targeted vectors for gene therapy of cancer and retroviral infections. Molecular Biotechnology, 6, 267–286.

    Article  CAS  Google Scholar 

  32. Yanez, R.J. and Porter, A.C.G. (1998). Therapeutic gene targeting. Gene Therapy, 5, 149–159.

    Article  CAS  Google Scholar 

  33. Bushman, F. (1995). Targeting retroviral integration.

    Google Scholar 

  34. www.wiley.co.uk/genetherapy.

    Google Scholar 

  35. Alton, E.W.F.W. et al. (1998). Towards gene therapy for cystic fibrosis: a clinical progress report. Gene Therapy, 5, 291–292.

    Article  CAS  Google Scholar 

  36. Paillard, F. (1998). Cancer cells under the fire of combined therapies. Human Gene Therapy, 9, 1259–1260.

    Article  CAS  Google Scholar 

  37. Eisensmith, F.C. and Woo, S.L.C. (1997): Viral Vector-Mediated gene therapy for Hemophilia B Thrombosis and Haemostasis, 78, 24–30.

    CAS  Google Scholar 

  38. Friedman, T. (1994). Gene Therapy for neurological disorders. Trends in Genetics, 10, 210–214.

    Article  Google Scholar 

  39. Culver, U.W. and Blaese, R.M. (1994).

    Google Scholar 

  40. Roth, J. A., and Christiano, R. J., (1997). Gene Therapy for Cancer: What have we done and where are we going? Journal of the National Cancer Institute, 89, 21–29.

    Article  CAS  Google Scholar 

  41. Hall, S. J. et al. (1997). Gene therapy 97. The promise and reality of cancer gene therapy. American Journal of Human Genetics, 61, 785–789.

    Article  CAS  Google Scholar 

  42. Cai, D.W. et al. (1993). Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Human Gene Therapy, 4, 617–624.

    Article  CAS  Google Scholar 

  43. Fujiwara, T. et al. (1993). A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Research, 53, 4129–4133.

    CAS  Google Scholar 

  44. Roth, J. A., (1996). Modification of tumour suppressor gene expression in non-small cell lung cancer (NSCLC) with a retroviral vector expressing wild (normal) p53. Human Gene Therapy, 7, 861–874.

    Article  CAS  Google Scholar 

  45. Gjerset, R.A. et al. (1995). Use of wild-type p53 to achieve complete treatment sensitisation of tumour cells expressing endogenous mutant p53 molecular carcinogens. 14, 275–285.

    CAS  Google Scholar 

  46. Nguyen, D. M. et al. (1996). Gene therapy for lung cancer: enhancement of tumour suppersion by a combination of sequential systmeic cisplation and adenovirusmediated p53 gene transfer. Journal of Thoracic Cardiovascular Surgery, 112, 13721377.

    Google Scholar 

  47. Salvadori, S. et al. (1995). B7–1 amplifies the response to interlukin- 2 secreting tumor vaccines in-vivo, but fails to induce response by naive cells in-vivo. Human Gene Therapy, 6, 1299–1306.

    Article  CAS  Google Scholar 

  48. Gaken, J. A. et al. (1997). Irradiated NC adenocarcinoma cells transduced with both B7.1 and interlukin- 2 induce CD4+–mediated rejection of established tumours. Human Gene Therapy, 8, 477–488.

    Article  CAS  Google Scholar 

  49. Addison, C.L. et al. (1995). Intramural injection of an adenovirus expressing interlukin -2 induces regression and immunity in a murine breast cancer model. Proceedings of the National Academy of Sciences, USA., 92, 8522–8526.

    Article  CAS  Google Scholar 

  50. Caruso, M. et al. (1998). Adenovirus-mediated interlukin-12 gene therapy for metastatic colon cancer. Proceedings of the National Academy of Sciences, USA., 93, 11302–11306.

    Article  Google Scholar 

  51. Khil, M. S. et al. (1996). Radiosensitisation by 5–fluorocytosine,ofhuman colorectal carcinoma cells in culture transduced with cytosine deaminase genes. Clinical Cancer Research, 2, 53–57.

    CAS  Google Scholar 

  52. Freytag, S. O. et al. (1998). A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Human Gene Therapy, 9, 1323–1333.

    Article  CAS  Google Scholar 

  53. Sorg, T. and Methali, M. (1997). Gene therapy for AIDS. Transfusion Science, 18, 277–289.

    Article  CAS  Google Scholar 

  54. Vandendriessche, T. et al. (1995). Inhibition of clinical Human Immunedeficiency Virus (HIV) type 1 isolates in primary CD4+ lymphocytes by retroviral vectors expressing anti-HIV genes. Journal of Virology, 69, 4045–4052.

    CAS  Google Scholar 

  55. Woffendin, C. et al. (1996). Expression of a protective gene prolongs survival of T-cells in HIV 1 infected patients. Proceeding of the National Academy of Sciences, U.S.A., 93, 1889–1894.

    Article  Google Scholar 

  56. Malim, M. H. et al. (1992). Stable expression of trans-dominant Rev protein in human T–cells inhibits human immunedeficiencey virus replication. Journal of Experimental Medicine, 176, 1197–1201.

    CAS  Google Scholar 

  57. Davis, B. R. et al. (1998). Targeted transduction of CD34+ cells by transdominant negative rev-expressing retrovirus yields partial anti-HIV protection of progeny macrophages. Human Gene Therapy, 9, 1197–1207.

    Article  CAS  Google Scholar 

  58. Vieillard, V. et al. (1995). Autocrine interferon-ß synthesis for gene therapy of HIV infection: increased resistance to HIV 1 in lymphocytes from healthy and HIV-infected individuals. AIDS, 9, 1221–1228.

    Article  CAS  Google Scholar 

  59. Sczakiel, G. et al. (1992). Tat-and Rev-directed antisense RNA expression inhibits and abolishes replication of Human Immune Deficiency Virus type 1: a temporal analysis. Journal of Virology, 66, 5576–5581.

    CAS  Google Scholar 

  60. Mheshilkar, A. M. et al. (1995). Inhibition of HIV-1 TAT-mediated LTR transactivation and HIV-1 infection by anti-TAT single chain intrabodies. EMBO Journal, 14, 1542–1551.

    Google Scholar 

  61. Sajjadi, N. et al. (1994). Recombinant retroviral vector delivered intramuscularly localises to the site of injection in mice. Human Gene Therapy, 5, 693–699.

    Google Scholar 

  62. Irwin, M. J. et al. (1994). Direct injection of a recombinant retroviral vector induces human immunedeficiency virus-specific immune responses in mice and nonhumans primates. Journal of Virology, 68, 5036–5044.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murphy, B. (1999). Viral mediated gene therapy. In: Walsh, G., Murphy, B. (eds) Biopharmaceuticals, an Industrial Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0926-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0926-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5237-7

  • Online ISBN: 978-94-017-0926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics