Skip to main content

Modelling of pristine depth limits for macrophyte growth in the southern Baltic Sea

  • Conference paper
Book cover Biology of the Baltic Sea

Part of the book series: Developments in Hydrobiology ((DIHY,volume 176))

  • 244 Accesses

Abstract

The knowledge of plant and animal distributions within surface water ecosystems is a prerequisite to develop an ecological classification system based on the guidelines of the Water Framework Directive of the European Union (EU-WFD). We developed a system of typology for macrophytes of the inner coastal waters of the German Baltic Sea based on given physical and chemical descriptors of the EU-WFD, and so far known ecophysiological requirements of the plants. Analysis of these requirements led to a minimum matrix of 14 factor combinations for a sufficient ecological characterisation of the communities (Bluemel et al., 2002). Here, we report on a model to describe the pristine habitats based on specific physical and chemical properties and ecophysiological potentials of macrophytes. In order to evaluate the most likely depth limits for macrophyte distribution we calculated annual depth-dependent light intensities for our reference lagoons. Knowledge of minimum light requirements for growth of typical species enabled us to compute maximum depth distribution through the year. Comparison of computed limits for growth were found to be in accordance with historical records. Therefore, we suggest that anthropogenic eutrophication and increased phytoplankton concentrations can indirectly be responsible for presently observed loss of macrophytes coverage due to light limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cDOM:

chromophoric dissolved organic matter

Chl a:

chlorophyll a

dailyPFD :

integrated photon flux density (400–700 nm) per day (μmol photons m−2 d−1)

Ec :

light compensation point (μmol photons m−2 s−1)

E k :

light saturation point (μmol photons m−2 s−1)

EU-WFD:

Water Framework Directive of the European Union (GL 2000/60/EC)

k 0 :

scalar light attenuation coefficient (400–700 nm), (m−1)

minPFD:

integrated minimum photon flux density for macrophyte growth

References

  • Anonymous, 2000. Guideline 2000/60/EU of the European Parliament, October 23rd 2000, Guidelines for measures in the field of Water Policy and Protection. Letter of the European Union L327 /1.

    Google Scholar 

  • Barthelmes, D., 1984. On the problem of the intensive carp rearing in lakes and eutrophication. Acta Hydrochim. Hydrobiol. 12: 153–161.

    Google Scholar 

  • Behrens, J.,1982. Soziologische und produktionsbiologische Untersuchungen an den submersen Pflanzengesellschaften der DarßZingster Boddengewässer. Thesis Universität Rostock, 168 pp.

    Google Scholar 

  • Bird, N. L., L. C. M. Chen & J. McLachlan, 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus ( Fucales, Phaeophyta). Bot. Mar. 22: 521–527.

    Google Scholar 

  • Blindow, I., 1992. Long-and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshw. Biol. 28: 15–27.

    Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Longterm pattern of alternative stable states in two shallow eutrophic lakes. Freshw. Biol. 30: 159–167.

    Google Scholar 

  • Blümel, C., A. Domin, J. C. Krause, M. Schubert, U. & Schiewer H. Schubert, 2002. Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 9: 1–119.

    Google Scholar 

  • Brönmark, C.& S. E. B. Weisner, 1999. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: An alternative mechanism. In Ilmavirta, V. R. I. Jones (eds), The Dynamics and Use of Lacustrine Ecosystems: 293–301.

    Google Scholar 

  • Burd, A. B.& K. H. Dunton, 2001. Field verification of a light-driven model of biomass changes in the seagrass Halodule wrightii. Mar. Ecol. Prog. Ser. 209: 85–98.

    Google Scholar 

  • Burkholder, J. M., J. E. Cooke & H. B. J. Glasgow, 1993. Coastal eutrophication and disappearing submersed vegetation: Effects of nitrate enrichment on three marine macrophytes. Aslo and Sws 1993 Annual Meeting. Abstracts.

    Google Scholar 

  • Chambers, P. A.& J. Kalff, 1985. Depth distribution and biomass of submerged aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42: 701–709.

    Google Scholar 

  • Comin, F. A., M. Menendez & J. R. Lucena, 1999. Proposals for macrophyte restoration in eutrophic coastal lagoons. In Gulati

    Google Scholar 

  • R. D., E. H. R. R. Lammens, M. L. Meijer & E. V. Donk (eds), Biomanipulation: A Tool For Water Management: 427–436.

    Google Scholar 

  • Correns, M., 1979. Der Wasserhaushalt der Bodden-und Haffgewässer der DDR als Grundlage für die weitere Erforschung ihrer Nutzungsfähigkeit zu Trink-und Brauchwasserzwecken. Thesis Humboldt-Universität Berlin, 189 pp.

    Google Scholar 

  • Crowder, A.& D. S. Painter, 1991. Submerged macrophytes in Lake Ontario: Current knowledge, importance, threats to stability, and needed studies. Can. J. Fish. Aquat. Sci. 48: 1539–1545.

    Google Scholar 

  • Dijk, G. M.& E. Donk, 1991. Perspectives for submerged macrophytes in shallow lake restoration projects in The Netherlands. Hydrobiol. J. 24: 125–131.

    Google Scholar 

  • Drevs, T., 1995. 14th BMB Symposium of Baltic Marine Biologists Association. The Baltic Marine Biologists, Pärnu, Estonia: 66 pp.

    Google Scholar 

  • Filbin, G. J.& J. W. Barko, 1985. Growth and nutrition of submersed macrophytes in a eutrophic Wisconsin impoundment. J. Freshw. Ecol. 3: 275–285.

    Google Scholar 

  • Fong, P.& M. A. Harwell, 1994. Modelling seagrass communities in tropical and subtropical bays and estuaries: a mathematical model synthesis of current hypotheses. Bull. Mar. Sci. 54: 757– 781.

    Google Scholar 

  • Fong, P., M. E. Jacobson, M. C. Mescher, D. Lirman M.& C. Harwell, 1997. Investigating the management potential of a seagrass model through sensitivity analysis and experiments. Ecol. Appl. 7: 300–315.

    Google Scholar 

  • Fortes, M. D.& K. Lüning, 1980. Growth Rates of North Sea Macroalgae in Relation to Temperature, Irradiance and Photoperiod. Helgol. Wiss. Meeresunters. 34: 15–29.

    Google Scholar 

  • Geisel, T., 1986. Pflanzensoziologische Untersuchung am Makrophytobenthos des Greifswalder Bodden. Thesis Universität Rostock, 94 pp.

    Google Scholar 

  • Gerbeaux, P.& J. C. Ward, 1988. The light climate of Lake Ellesmere and its effect on the growth of aquatic plants. In Sladecek, V. (ed.), Congress in New Zealand 1987, Proceedings. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Hellquist, C. B., 1980. Correlation of alkalinity and distribution of Potamogeton in New England. Rhodora 82: 331–344.

    CAS  Google Scholar 

  • Hoffman, E., 1994. A marine ecosystem and an economic and ethnological analysis of the consequences of utilizing its biological resources. Theme Session on Improving the Link between Fisheries Science and Management: Biological, Social and Economic Considerations. Copenhagen, Denmark. ICES: 12.

    Google Scholar 

  • Hough, R. A., T. E. Allenson & D. D. Dion, 1991. The response of macrophyte communities to drought-induced reduction of nutrient loading in a chain of lakes. Aquat. Bot. 41: 299–308.

    Google Scholar 

  • Hutchinson, G. E., 1970. The chemical ecology of three species of Myriophyllum ( Angiospermae, Haloargaceae). Limnol. Oceanogr. 15: 1–5.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology. Wiley, New York.

    Google Scholar 

  • Kasprzak, P., R. Koschel, L. Krienitz, R. W. Bachmann, J. R. Jones, R. H. Peters & D. M. Soballe, 1995. The restoration of a hypertrophic stratified hardwater lake by combination of load reduction and biomanipulation. Lake Reservoir Management 11: 155.

    Google Scholar 

  • Kautsky, L., 1991. In situ experiments on interrelationships between six brackish macrophyte species. Aquat. Bot. 39: 159–172.

    Google Scholar 

  • Kautsky, N., H. Kautsky, U. Kautsky & M. Waern, 1986. Decreased depth penetration of Fucus vesiculosus (L.) since the 1940s indicates eutrophication of the Baltic Sea. Mar. Ecol. Progr. Ser. 28: 1–8.

    Google Scholar 

  • Kautsky, U., 1995. Ecosystem processes in coastal areas of the Baltic Sea. Stockholm University Sweden. Dept of Zoology. 1–25.

    Google Scholar 

  • Kolp, O., 1966. Die Sedimente der westlichen und südlichen Ostsee und ihre Darstellung. Beiträge zur Meereskunde 17 /18: 9–60.

    Google Scholar 

  • Krause, W., 1981. Charophyta as indicator species for water pollu-tion. Limnologica 13: 399–418.

    Google Scholar 

  • Krienitz, L., P. Kasprzak & R. Koschel, 1996. Long-term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee ( Baltic lake district, Germany). Hydrobiologia 330: 89–110.

    Google Scholar 

  • Kukk, H.& G. Martin, 1992. Long-term dynamics of the phytobenthos in Pärnu Bay, the Baltic Sea. Proc. Est. Acad. Sci. Ecol. 2: 110–118.

    Google Scholar 

  • Küster, A., R. Schaible & H. Schubert, 2000. Light acclimation of the charophyte Lamprothamnium papulosum. Aquat. Bot. 68: 205–216.

    Google Scholar 

  • Leukart, P.& K. Lüning, 1994. Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. Eur. J. Phycol. 29: 103–112.

    Google Scholar 

  • Lewander, M., M. Greger, L. Kautsky & E. Szarek, 1996. Macrophytes as indicators of bioavailable Cd, Pb and Zn flow in the River Przemsza, Katowice region. Environm. Geochem. 11: 169–173.

    Google Scholar 

  • Lindblad, C.& U. Kautsky, 1992. Modelling disturbance in Baltic shallow ecosystems. Ices Council Meeting Papers. Ices, Copenhagen, Denmark. Conference Proceedings, 9 pp.

    Google Scholar 

  • Lindner, A., 1972. Soziologisch-ökologische Untersuchungen an der submersen Vegetation der Boddenkette südlich des Darß und des Zingst. Thesis Universität Rostock, 201 pp.

    Google Scholar 

  • Lotze, H.& W. Schramm, 2000. Ecophysiological traits explain species dominance patterns in macroalgal blooms. J. Phycol. 36: 287–295.

    Article  CAS  Google Scholar 

  • Lotze, H., W. Schramm, D. Schories & B. Worm, 1999. Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119: 46–54.

    Google Scholar 

  • Lovett Doust, J., M. Schmidt & L. Lovett Doust, 1994. Biological assessment of aquatic pollution: a review with emphasis on plants and biomonitors. Biol. Rev. 69: 147–186.

    Google Scholar 

  • Lüning, K., 1979. Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar. Ecol. Prog. Ser. 1: 195–207.

    Google Scholar 

  • Lüning, K. M. J.& Dring, 1994. Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol. Wiss. Meeresunters 32: 403–424.

    Google Scholar 

  • Madden, C. J.& W. M. Kemp, 1996. Ecosystem model of an estuarine submerged plant community: calibration and simulation of eutrophication responses. Estuaries 19: 457–474.

    Article  CAS  Google Scholar 

  • Madsen, J. D., C. F. Hartleb & C. W. Boylen, 1991. Photosynthetic characteristics of Myriophyllum spicatum and six submerged aquatic species native to Lake George, New York. Freshwat. Biol. 26: 233–240.

    Google Scholar 

  • Madsen, J. D., J. W. Sutherland, J. A. Bloomfield, L. W. Eichler & C. W. Boylen, 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. J. Aquatic Plant Management 29: 94–99.

    Google Scholar 

  • Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, L. W. Eichler C. W. Boylen, 1996. The aquatic macrophyte community of Onondaga Lake: Field survey and plant growth bioassays of lake sediments. Lake Reservoir Management: 73–79.

    Google Scholar 

  • Malm, T., L. Kautsky & R. Engkvist, 2001. Reproduction, recruitment and geographical distribution of Fucus serratus L. in the Baltic Sea. Botanica Marina 44: 101–108.

    Article  Google Scholar 

  • Martin, A. C.& F. M. Uhler, 1939. Food of game ducks in the United States and Canada., U. S. Dept. Agric. Techn. Bull. 634.

    Google Scholar 

  • McCreary, N. J., 1991. Competition as a mechanism of submerged macrophyte community structure. Aquat. Bot. 41: 177–193.

    Google Scholar 

  • Menendez, M.& A. Sanchez, 1998. Seasonal variations in P-I responses of Chara hispida L. and Potamogeton pectinatus L. from stream Mediterranean ponds. Aquat. Bot. 61: 1–15.

    Google Scholar 

  • Moyle, J. P., 1945. Some chemical factors influencing the distribu-

    Google Scholar 

  • tion of aquatic plants in Minnesota. Am. Nat. 34: 402–420. Niemeck, R. A.& A. C. Mathieson, 1978. Physiological studies of

    Google Scholar 

  • intertidal fucoid algae, Bot. Mar. 21: 221–227.

    Google Scholar 

  • Orfanidis, S., N. Stamatis, E. Tsiaga, V. Ragias & W. Schramm, 2000. Eutrophication and marine benthic vegetation in the Lagoon of Vassova, Prefecture of Kavala. Proceedings of the 6th Hellenic Symposium on Oceanography and Fisheries: 429–433.

    Google Scholar 

  • Painter, D. S., K. J. McCabe & W. L. Simser, 1988. Past and present limnological conditions in Coote’s Paradise affecting aquatic vegetation. Natl. Water Res. Inst. Contr. 4: 88–147.

    Google Scholar 

  • Rosenberg, G.& J. Ramus, 1982. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. ( Chlorophyceae ): Photosynthesis and antenna composition. Mar. Ecol. Prog. Ser. 8: 233–241.

    Google Scholar 

  • Rybicki, N. B.& V. Carter, 1986. Effect of sediment type on survival of Valisneria americana grown from tubers. Aquat. Bot. 24: 233– 240.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes, 355 pp.

    Google Scholar 

  • Schiewer, U., 1994. Makrophytenkartierung und Ground-TruthMessungen in der Darß-Zingster Boddenkette, Juli-August 1994. Final Report to the German Ministry for Education and Science, 86 pp.

    Google Scholar 

  • Schiewer, U., R. Schumann, R. Heerkloss & G. Klinkenberg, 1994. Hypertrophierung der Darß-Zingster Boddenkette. Struktur-und Funktionsänderungen im Plankton. Rostocker Meeresbiologische Beiträge 2: 149–177.

    Google Scholar 

  • Schlungbaum, G., 1997. Die Bewertung der inneren Küstengewässer der Ostsee in Mecklenburg-Vorpommern–- ein Beitrag zum Gewässergüteatlas der Bundesrepublik Deutschland mit Vergleichen zu den fließenden und stehenden Gewässern. Rostocker Meeresbiologische Beiträge 5: 9–37.

    Google Scholar 

  • Schramm, W., 1999. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J. Appl. Phycol. 11: 69-

    Google Scholar 

  • Schramm, W., D. Abele & G. Breuer, 1988. Nitrogen and phosphorus nutrition and productivity of two community forming seaweeds (Fucus vesiculosus, Phycodrys rubens) from the western Baltic (Kiel Bight) in the light of eutrophication processes. In H. Theede W. Schramm (eds), The Baltic Sea Environment. History, Eutrophication, Recruitment, Ecotoxicology: 221–240.

    Google Scholar 

  • Schubert, H.,& R. M. Forster S. Sagert, 1995. In situ measurement of state transition in cyanobacterial blooms–kinetics and extent of the state change in relation to underwater light and vertical mixing. Mar. Ecol. Prog. Ser. 128: 99–108.

    Google Scholar 

  • Schubert, H., S. Sagert & R. M. Forster, 2001. Evaluation of different levels of variability in the underwater light field of a shallow estuary. Helgol. Mar. Res. 55: 12–22.

    Google Scholar 

  • Serrao, E., L. Kautsky & S. Brawley, 1996. Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107: 1–12.

    Article  Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–126.

    Google Scholar 

  • Stirk, W. A., M. E. Aken & J. Van Staden, 1995. Effect of irradiance on photosynthesis in a filamentous red alga ( Ceramiaceae, Rhodophyta). S. Afr. Tydskr. Plantkd. 61: 153–157.

    Google Scholar 

  • Teubner, J., 1989. Quantitative und qualitative Erfassung submerser Makrophyten 1986/87–Luftbildanalyse. Thesis Universität Rostock, 51 pp.

    Google Scholar 

  • Umweltministerium, 1999. Gewässergütebericht 1996/1997–Gütezustand der oberirdischen Gewässer, der Küstengewässer und Grundwasser in Mecklenburg-Vorpommern. Umweltministerium Mecklenburg-Vorpommern (ed.), Schwerin, 140 pp.

    Google Scholar 

  • Vermaat, J. E.& F. C. A. Verhagen, 1996. Seasonal-variation in the intertidal seagrass Zostera noltii Hornem.–Coupling demographic and physiological patterns. Aquat. Bot. 52: 259–281.

    Google Scholar 

  • Vogt, H.& W. Schramm, 1991. Conspicuous decline of Fucus in Kiel Bay (western Baltic): What are the causes? Mar. Ecol. Progr. Ser. 69: 189–194.

    Google Scholar 

  • Walter, T., 1981. Produktionsbiologische Untersuchungen an submersen Makrophyten unter Einsatz selbstregistrierender Messgeräte. Thesis, Universität Rostock, 156 pp.

    Google Scholar 

  • Wetzel, R. L.& H. A. Neckles, 1986. A model of Zostera marina L. photosynthesis and growth: Simulated effects of selected physical-chemical variables and biological interactions. In Sand Jensen, K.& M. Soendergaard (eds), Submerged Macrophytes, Special Issue: 307–323.

    Google Scholar 

  • Yousef, M., A. Küster,& H. Schubert H. von Nordheim, 1997. Charakterisierung der Characeenbestände an der Küste Mecklenburg-Vorpommerns. Bodden 5: 3–23.

    Google Scholar 

  • Yousef, M., H. von Nordheim, A. Küster & H. Schubert, 1997. Eignung der Armleuchteralgen ( Characeae) als Indikator für den Gewässerzustand der Flachwasserbereiche der Ostseeküste. Aktuelle Probleme der Meeresumwelt Supplement 7: 173–182.

    Google Scholar 

  • Yousef, M. A. M., 1999. Ökophysiologie von Makrophyten und Epiphyten in Flachwasserökosystemen. Thesis Universität Rostock, 94 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Domin, A., Schubert, H., Krause, J.C., Schiewer, U. (2004). Modelling of pristine depth limits for macrophyte growth in the southern Baltic Sea. In: Kautsky, H., Snoeijs, P. (eds) Biology of the Baltic Sea. Developments in Hydrobiology, vol 176. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0920-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0920-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6550-6

  • Online ISBN: 978-94-017-0920-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics