Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 37))

Abstract

A quantum dynamical system is modeled by associating a complete set of orthogonal eigenfunctions labeled by position q (“pixels”), defined only at lattice points, plus other labelling indices (“colors”), and a complete set of orthogonal eigenfunctions labelled by momentum p, defined only inside the Brillouin zone, plus other corresponding labelling indices. Measurement of position q and momentum p are represented by operators \(\hat Q\) and \(\hat P\) multiplying the position (q) and momentum (p) eigenfunctions, respectively. The uncertainty relations for \(\hat Q\) and \(\hat P\) hold. We demonstrate that this model enable us to formulate quantum mechanics in a lattice, representing a reduced number of degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mermin, N.D. (1979) “The Topological Theory of Defects in Ordered Media,” Rev. Mod. Phys. 51, 591–648.

    Article  MathSciNet  ADS  Google Scholar 

  2. Minsky, A. (1982) “Cellular Vacuum,” International Journal of Theoretical Physics 21, 537–551; S.Y. Berkovich, private communication on his paper presented at this conference.

    Google Scholar 

  3. Cobb, W.K. and Smalley, L.L. (1982) “Semiclassical Expanding Discrete Space-Times,” International Journal of Theoretical Physics 21, 757–763.

    Article  ADS  Google Scholar 

  4. Sakurai, J.J. (1982) Advanced Quantum Mechanics Addison Wesley, Reading, MA.

    Google Scholar 

  5. Newton, T.D. and Wigner, E.P. (1949) “Localized States for Elementary Systems,” Rev. Mod. Phys. 21, 400–406.

    Article  ADS  MATH  Google Scholar 

  6. Buot, F.A. (1973) “Weyl Transform and Magnetic Susceptibility of a Relativistic Dirac Electron Gas,” Phys. Rev. A8, 1570–1581; (1974) Phys. Rev. A9, 2811–2813.

    ADS  Google Scholar 

  7. Buot, F.A. (1987) “Theory of Coupling of Electronic Systems: Experimental Structures Using Advanced Lithographic Techniques,” Superlattices and Microstructures 3, 399–408.

    Article  ADS  Google Scholar 

  8. Buot, F.A., Scott, C., Mack, I. and Sieger, K.J. (1988) “Fundamental Physical Limits of Computation: Rigid Coupling Model, Broken Symmetry and Self-Induced Transmission in a Computer Medium,” in F.L. Carter, R.A. Sietkowski, and H. Wohltjen (eds.) Molecular Electronic Devices III, North Holland, Amsterdam.

    Google Scholar 

  9. Buot, F.A. (1986) “Direct Construction of Path Integrals in the Lattice-Space Multiband Dynamics of Electrons in a Solid,” Phys. Rev. A33, 2544–2562.

    Article  ADS  Google Scholar 

  10. Buot, F.A. (1976) “Magnetic Susceptibility Of Interacting Free and Bloch Electrons,” Phys. Rev. B14, 3310–3328, and references quoted therein.

    Google Scholar 

  11. Buot, F.A. (1975) “Magnetic Susceptibility of Dilute Nonmagnetic Alloys” Phys. Rev. B11, 1426–1436.

    Article  ADS  Google Scholar 

  12. Buot, F.A., Li, P.L. and Strom-Olsen, J.O. (1976) “The Influence of Scattering on Magnetic Breakdown,” J. Low Temp. Phys. 22, 535–556.

    Article  ADS  Google Scholar 

  13. Jensen, K.L. and Buot, F.A. (1988) “Numerical Simulation of Transient Response and Resonant-Tunneling Characteristic of Double-Barrier Semiconductor Structures as Function of Experimental Parameters,” NRL preprint.

    Google Scholar 

  14. Jensen, K.L. and Buot, F.A. (1988) “Numerical Calculation of Particle Trajectories and Tunneling Times for Resonant Tunneling Barrier Structure,” NRL preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buot, F.A. (1989). Discrete Phase-Space Model for Quantum Mechanics. In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0849-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0849-4_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4058-9

  • Online ISBN: 978-94-017-0849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics