Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 37))

  • 939 Accesses

Abstract

The wave function for a spinless charged particle in an electromagnetic field is decomposed into two probability amplitudes, one for a particle and one for an antiparticle. The particle amplitude is specified at the initial time and the antiparticle amplitude at the final time. Time reflection invariance indicates that the preparation of the antiparticle state at the final time should be carried out by observers composed of antiparticles. A model of elementary particles shows how relativistic quantum mechanics can be used to describe all reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marx, E. (1969) ‘Probabilistic interpretation of relativistic scattering’, Nuovo Cimento 60A, 669–682.

    Article  ADS  Google Scholar 

  2. Marx, E. (1970) ‘Relativistic quantum mechanics of identical bosons’, Nuovo Cimento 67A, 129–152.

    Article  ADS  Google Scholar 

  3. Marx, E. (1987) ‘Causal Green function in relativistic quantum mechanics’, International Journal of Theoretical Physics 26, 725–740.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Stueckelberg, E. C. G. (1942) ‘La mécanique du point matériel en théorie de relativité et en théorie des quanta’, Helvetica Physica Acta 15, 23–37.

    MathSciNet  Google Scholar 

  5. Feynman, R. P. (1949) ‘The theory of positrons’, Physical Review 76, 749–759.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Walter, J. F. and Marx, E. (1971) ‘Pair annihilation at a potential barrier in time’, Nuovo Cimento 2B, 1–8.

    Google Scholar 

  7. Marx, E. (1985) ‘The composite electron’, International Journal of Theoretical Physics 24, 685–700.

    Article  ADS  Google Scholar 

  8. Marx, E. (1986) ‘The composite proton’, National Bureau of Standards IR 86–3370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marx, E. (1989). Relativistic Probability Amplitudes and State Preparation. In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0849-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0849-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4058-9

  • Online ISBN: 978-94-017-0849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics