Advertisement

A Method of Identifying Homeostasis Relaxation Characteristics

  • L. S. Maergoiz
Part of the Mathematics and Its Applications book series (MAIA, volume 559)

Abstract

A way of investigating medico-biological, biophysical, physico-chemical or other dynamically balanced systems is to study the relaxation of certain system parameters (“variables”) after an external impact. Provided the changes in the systems are not pathological, the variables either regain their original levels or pass to new (adaptation) levels. A glowing example of this is homeostasis systems of living organisms. It is well known that homeostasis, i.e., the ability of an organism to sustain permanence of its internal medium under disturbances, is the basis of self-preservation of living systems.

Keywords

Entire Function Multiple Root Homeostasis System Prony Method Complex Conjugate Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Akhtunin V. M., Nefedov V. P., Sakharov M. P. et al. Engineer physiology and modeling of systems of an organism. Nauka, Siberian Branch, Novosibirsk, 1987. 240 pp.Google Scholar
  2. 2.
    Anikonov Yu. E. New mathematical models and inverse problems. In: Mathematical Simulation in Geophysics. VTS SO AN SSSR, Novosibirsk, 1987. pp. 3–42.Google Scholar
  3. 3.
    Anikonov Yu. E., Bubnov B. A. On a method of the study of multidimensional inverse problems. In: Methods of Study of Inverse Problems and Ill-posed Problems. VTS SO AN SSSR, Novosibirsk, 1987, pp. 22–40.Google Scholar
  4. 4.
    Cartan H. Calcul différentiel. Formes différentielles Hermann, Paris,1967.Google Scholar
  5. 5.
    Eigen M., Maeyer L. D. Theoretical base of the relaxation spectroscopy. In: Investigation of Rates and Mechanisms of Reactions. Third edition. John Wiley and Sons, New York-London-Sydney-Toronto, 1974.Google Scholar
  6. 6.
    Eykhoff P. System identification John Wiley and Sons Ltd., 1974.Google Scholar
  7. 7.
    Gelfond A. O. Calculus of finite differences. Nauka, Moscow, 1967. 376 pp.Google Scholar
  8. 8.
    Golubkov V. V., Shcherbov S. Ya. Exponential approximation. All-Union Institute of System Research, preprint. Moscow, 1980. 36 pp.Google Scholar
  9. 9.
    Hamming R. W. Numerical methods for scientists and engineers. Mc Grow-hill Book Company, Inc. New York, San Francisko, Toronto, London, 1962.Google Scholar
  10. 10.
    Hurgin Ya. I., Yakovlev V. P. Methods of the theory of entire functions in radiophysics. Fizmatgiz, Moscow, 1962. 220 pp.Google Scholar
  11. 11.
    Hurgin Ya. I., Yakovlev V. P. Finitary functions in physics and engineering. Nauka, Moscow, 1971. 408 pp.Google Scholar
  12. 12.
    Ivakhnenko A. G., Krotov G. I., Cherebkus V. I. Harmonic and exponential-harmonic algorithms of the cluster analysis method for long-time prediction of oscillatory processes. Part 1. One-channal algorithms. Authomatics (1981), no. 3, pp. 1730.Google Scholar
  13. 13.
    Ivakhnenko A. G., Krotov G. I., Yurachkovskii Yu. P. Exponential-harmonic algorithms of the cluster analysis method. Authoma tics (1981), no. 2, pp. 23–30.Google Scholar
  14. 14.
    Ivanov V. K. Stability of the complex moment problem. Mat. Sb. (1965), Vol. 68(110), no. 4, pp. 570–585.Google Scholar
  15. 15.
    Kay S. M., Marple S. L., Jr. Spectrum Analysis–A Modern Perspective. Proc. of the IEEE (1981), Vol. 49, no. 11, pp. 1380–1419.CrossRefGoogle Scholar
  16. 16.
    Komarov A. I. Computer based methods of analysis of kinetical information in biophisical research. Abstract of the Ph. D. Thesis, Moscow, 1983. 25 pp.Google Scholar
  17. 17.
    Kondrat’ev V. P. Approximation by exponential sums. Optimization programs (approximation of functions). In: Sb. Nauch. Tr. Inst. Mat. Mech., UNTS AN SSSR (1975), no. 6, pp. 3–17.Google Scholar
  18. 18.
    Kritskii V. G. Separation of two components in the exponential representation of functions. In: Analysis and Interpretation of Physical Experiments. Moscow University Publishers, Moscow, 1980, pp. 104–115.Google Scholar
  19. 19.
    Lavrent’ev M. M. Interior problems for differential equations. In: Topical Problems of Computational Mathematics and Mathematical Simulation. Nauka, Siberian Branch, Novosibirsk, 1985, pp. 119–124.Google Scholar
  20. 20.
    Lanczos C. Applied Analysis. Prentice Hall, Inc, 1956.Google Scholar
  21. 21.
    Levin M. I., Semko Yu. I. Finding the parameters of periodic signals by their instant values. Autometriya (1966), no. 1, pp. 33–40.Google Scholar
  22. 22.
    Maergoiz L. S. A method of identification of relaxation characteristics for homeostasis processes, and the domain of its stability. Physics Institute, USSR Academy of Sciences, Siberian Branch, Preprint no. 69B, Krasnoyarsk, 1987, 23 pp.Google Scholar
  23. 23.
    Maergoiz L. S. A multidimensional version of the Prony algorithm. Sibirsk. Mat. Zh. (1994), 35, no. 2 pp. 389–406..Google Scholar
  24. 24.
    Maergoiz L. S. Extreme properties of entire functions in the Wiener class, with applications. Doklady RAN (1997), Vol. 356, no. 2 pp. 161–165..Google Scholar
  25. 25.
    Maergoiz L. S. Optimal estimate for extrapolation in the Wiener class. Sibirsk. Mat. Zh. (2000), Vol. 41, no. 6 pp. 1363–1375..Google Scholar
  26. 26.
    Maergoiz L. S., Solovei L. I., Avramenok A. K. On mathematical prediction of the glycemia dynamics. Cybernetics (1984), no. 1, pp. 106–109.Google Scholar
  27. 27.
    Maergoiz L. S., Varava B. N. On a system of principles in mathematical prediction of homeostasis processes. In: Homeostasis Mechanisms in Isolated Systems in an Organism, IF SO AN SSSR, Krasnoyarsk, 1984, pp. 134–138.Google Scholar
  28. 28.
    Maergoiz L. S., Varava B. N. A method of mathematical prediction of the dynamics of homeostasis-type processes. In: Cybernetics and Computational Technics. Collected Research papers. V. M. Glushkov Cybernetics Institute, Ukrainian Academy of Sciences, no. 70, Kiev, 1986, pp. 46–50.Google Scholar
  29. 29.
    Maergoiz L. S., Varava B. N. On Prony’s method of harmonic expansion. In: Complex Analysis and Differential Equations, Krasnoyarsk State University, Krasnoyarsk, 1996, pp. 86–94.Google Scholar
  30. 30.
    Maergoiz L. S., Varava B. N. Relationship between linear third order differential and difference equations with constant coefficients. In: Complex Analysis and Differential Operators, Izd. Krasnoyarsk State University, Krasnoyarsk, 2000, pp. 80–84.Google Scholar
  31. 31.
    Maergoiz L. S., Varava B. N., Manchuk V. T. Mathematical simulation and prediction for the homeostasis of glucose and sugar in blood. Avtomatica (1985), no. 2, pp. 60–65.Google Scholar
  32. 32.
    Maergoiz L. S., Varava B. N., Karapetyan A.I. Constant level stabilized relaxation indices and their identification algorithm. AMSE Transactions “Scientific Siberian”. Series A Dynamics (1992), Vol. 4, pp. 95–103.Google Scholar
  33. 33.
    Maergoiz L. S., Zakharova L. B., Egorushkin I. O., Kondrat’eva V. P. On mathematical prediction of the growth dynamics for the ferment activity in ontogenesis. Byull. Sib. Otd. AMN SSSR (1984), no. 1, pp. 92–95.Google Scholar
  34. 34.
    Maergoiz L. S., Fedotov A. M. Optimal discrepancy for analytic extension from a finite set in the case of inaccurate data, for Hilbert spaces of entire functions, Sibirsk. Math. Zh. (2001), Vol. 42, no. 5, pp. 1106–1116..Google Scholar
  35. 35.
    Mirolyubov A. A., Soldatov M. A. Linear homogeneous difference equations. Nauka, Moscow, 1981, 208 pp.Google Scholar
  36. 36.
    Nefedov V. P,, Dorer G. A., Yarygina N. V. Perfusion parameters for isolated organs. Nauka, Siberian Branch, Novosibirsk, 1983. 229 pp.Google Scholar
  37. 37.
    Novosel’tsev V. N. Control theory and biological systems. Nauka, Moscow, 1978. 319 pp.Google Scholar
  38. 38.
    Price H. I. An improved Prony algorithm for exponential analysis. In: International Simposium on Electromagnetic Compatibility. San Diego: IEEE, 1979, pp. 310–313.Google Scholar
  39. 39.
    Prony G. R. B. Essai expérimental et analytique, etc J. de L’École Polytechnique (1795), Vol. 1, no. 2 pp. 24–76.Google Scholar
  40. 40.
    Romanovskii R. M., Stepanova A. V., Chernayskii D. S. Mathematical biophysics. Nauka, Moscow, 1984. 303 pp.Google Scholar
  41. 41.
    Tikhonov A. N., Arsenin V. Ya. Methods of solution of ill-posed problems. Nauka, Moscow, 1979. 288 pp.Google Scholar
  42. 42.
    Vasilenko V. A., Zyuzin M. V., Kovalkov A. V. Splines and digital filters. VTS SO AN SSSR, Novosibirsk, 1984. 156 pp.Google Scholar
  43. 43.
    Marple S. L., Jr. Digital spectral analysis with applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.Google Scholar
  44. 44.
    Zav’yalov M. N. Modification of the Prony algorithm for a system of ordinary linear differential equations with constant unknown coefficients. In: Multidimensional complex analysis, Krasnoyarsk, KGU, 2002; 37–47.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. S. Maergoiz
    • 1
  1. 1.Institute of Computational ModellingThe Krasnoyarsk State Academy of Architecture and Civil EngineeringKrasnoyarskRussia

Personalised recommendations