Skip to main content

Abstract

Reproduction is an essential process for all living things. Moreover, for many crop species reproductive structures are the principle edible parts. Despite this, relatively little is known about the effect of mycorrhizal symbiosis on host plant reproduction. Common limitations to reproduction include nutrient deficiency, herbivory and disease. Mycorrhizal fungi may influence all three. Different host species may vary in their response to infection by mycorrhizal fungi Temporal variation in response to infection by mycorrhizal fungi may also occur because of temporal variation in nutrient uptake in relation to nutrient demand. Several aspects of sexual reproduction may be influenced by infection by mycorrhizal fungi including the timing of reproductive events, the number of inflorescences per plant, the number of flowers per inflorescence, the amount of pollen per flower, the proportion of flowers producing fruits, and the number of seeds per fruit. Seed quality can also be strongly influenced by infection by mycorrhizal fungi, resulting in variation in seedling vigor and resultant competitive ability. Because infection by mycorrhizal fungi can influence interactions among plants, it may also influence the structure of populations and communities, determining, in part, the relative contributions by individuals to the next generation. Because infection by mycorrhizal fungi influences the nutrient and carbon status of hosts, it may indirectly influence herbivory and disease, both of which may limit reproduction. Several topics for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, L.K. and Robson, A.D. 1984. The effect of VA mycorrhizae on plant growth. In VA Mycorrhiza, Eds. CL Powell and DJ Bagyaraj, CRC Press, Boca, Raton, Florida, USA.

    Google Scholar 

  2. Abuzinadah, R A, Finlay, R.D. and Read, D.J. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus_ contorta. New Phytol. 103: 495–506.

    Article  CAS  Google Scholar 

  3. Allen, E.B. and Allen, M.F. 1984. Competition between plants of different successional stages: mycorrhizae as regulators. Can. J. Bot 62: 2625–2629.

    Article  Google Scholar 

  4. Allsopp, N. and Stock, W.D. 1992. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia. 91: 281–287.

    Article  Google Scholar 

  5. Austin, R.B. 1966. The influence of the phosphorus and nitrogen nutrition of pea plants on the growth of their progeny. Plant Soil. 24: 53–58.

    Google Scholar 

  6. Bâath, E. and Hayman, D.S. 1984. Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant Soil. 77: 373–376.

    Article  Google Scholar 

  7. Barry, D.A.J. and Miller, M.H. 1989. Phosphorus nutritional requirement of maize seedlings for maximum yield. Agronomy J. 81: 95–99.

    Article  Google Scholar 

  8. Bazzaz, F A, Chiariello, N.R., Coley, P.D. and Pitelka, L.F. 1987. Allocating resources to reproduction and defense. BioScience. 37: 58–67.

    Article  Google Scholar 

  9. Bertin, R.I. 1988. Paternity in plants. In Plant Reproductive Ecology. Eds. JL Doust and LL Doust. Oxford University Press, New York. pp 30–59.

    Google Scholar 

  10. Bolland, M.D.A. and Paynter, B.H. 1990. Increasing phosphorus concentration in seed of annual pasture legume species increases herbage and seed yields. Plant Soil. 125: 197–205.

    Article  CAS  Google Scholar 

  11. Borowicz, V.A. 1997. A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia. 112: 534–542.

    Article  Google Scholar 

  12. Boswell, E.P., Koide, R.T., Shumway, D.L. and Addy, H.D. 1998. Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecosys. Environ. 67: 55–65.

    Article  Google Scholar 

  13. Bryla, D.R. and Koide, R.T. 1990. Regulation of reproduction in wild and cultivated Lycopersicon esculentum Mill. by vesicular-arbuscular mycorrhizal infection. Oecologia. 84: 74–81.

    Article  Google Scholar 

  14. Busse, M.D. and Ellis, J.R. 1985. Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Can. J. Bot. 63: 2290–2294.

    Article  Google Scholar 

  15. Buwalda, J.G. 1980. Growth of a clover-ryegrass association with vesicular-arbuscular mycorrhizas. N.Z. J. Agric. Res. 23: 379–383.

    Article  Google Scholar 

  16. Carey, P.D., Fitter, A.H. and Watkinson, A.R. 1982. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia. 90: 550–555.

    Article  Google Scholar 

  17. Caron, M., Fortin, J.A. and Richard, C. 1986. Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopath. 76: 942–946.

    Article  CAS  Google Scholar 

  18. Clarke, C. and Mosse, B. 1981. Plant growth responses to vesicular-arbuscular mycorrhiza XII. Field inoculation responses of barley at two soil P levels. New Phytol. 87: 695–703.

    Article  CAS  Google Scholar 

  19. Codignola, A., Verotta, L., Spanu, P., Maffei, M., Scannerini, S. and Bonfante-Fasolo, P. 1989. Cell wall bound-phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol. 112: 221–228.

    Article  CAS  Google Scholar 

  20. Cooper, K.M. 1984. Physiology of VA mycorrhizal associations. In VA Mycorrhiza, Eds. CL Powell and DJ Bagyaraj, CRC Press, Boca Raton, Florida.

    Google Scholar 

  21. Cox, P.A. 1988. Monomorphic and dimorphic sexual strategies: a modular approach. In Plant Reproductive Ecology Patterns and Strategies, Eds. J Lovett Doust and L Lovett Doust, Oxford University Press, New York.

    Google Scholar 

  22. Crush, J.R. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza VII. Growth and nodulation of some herbage legumes. New Phytol. 73: 743–749.

    Google Scholar 

  23. Daft, M.J. and Okusanya, B.O. 1973. Effect of Endogone mycorrhiza on plant growth. VI. Influence of infection on the anatomy and reproductive development in four hosts. New Phytol. 72: 1333–1339.

    Article  Google Scholar 

  24. Davis, M.A. 1981. The effect of pollinators, predators and energy constraints on the floral ecology and evolution of Trillium erectum Oecologia. 48: 400–406.

    Google Scholar 

  25. Davis, R.M. and Menge, J.A. 1981. Phytophthora parasitica inoculation and intensity of vesicular-arbuscular mycorrhizae in citrus. New Phytol. 87: 705–715.

    Article  Google Scholar 

  26. Del Vecchio, T.A., Gehring, C.A., Cobb, N.S. and Whitham, T.G. 1993. Negative effects of scale insect herbivory on the ectomycorrhizae of juvenile pinyon pine. Ecol. 74: 22997–2302.

    Article  Google Scholar 

  27. Dodd, J. and Jeffries, P. 1986. Early development of vesicular-arbuscular mycorrhizas in autumn-sown cereals. Soil Biol. Biochem. 18: 149–154.

    Article  Google Scholar 

  28. Dodd, J., Krikun, J. and Haas, J. 1983. Relative effectiveness of indigenous populations of vesicular-arbuscular mycorrhizal fungi from four sites in the Negev. Israel J. Bot. 32: 10–21.

    Google Scholar 

  29. Dumas-Gaudot, E., Grenier, J., Furlan, V. and Asselin, A. 1992. Chitinase, chitosanase and 13–1,3-glucanase activities in Allium and Pisum roots colonized by Glomus species. Plant Sci. 84: 17–24.

    Article  CAS  Google Scholar 

  30. Dunne, M.J. and Fitter, A.H. 1989. The phosphorus budget of a field-grown strawberry (Fragaria x ananassa cv. Hapil) crop: evidence for a mycorrhizal contribution. Ann. Appl. Biol. 114: 185–193.

    Article  Google Scholar 

  31. Fitter, A.H. 1977 Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol. 79: 119–125.

    Article  CAS  Google Scholar 

  32. Fitter, A.H. 1991. Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia. 47: 350–355.

    Google Scholar 

  33. Francis, R. and Read, D.J. 1994. The contributions of mycorrhizal fungi to the determination of plant community structure. In Management of Mycorrhizas in Agriculture, Horticulture and Forestry. Eds. AD Robson, LK Abbott and N Malajczuk. Kluwer Academic Publishers, Dordrecht, Netherlands. pp 11–25.

    Google Scholar 

  34. Gange, A.C. 1998. A potential microbiological method for the reduction of Poa annua L. in golf greens. J. Turfgrass Sci. 74: 9–14.

    Google Scholar 

  35. Gange, A.C., Brown, V.K. and Sinclair, G.S. 1993. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7: 616–622.

    Article  Google Scholar 

  36. Gange, A.C., Brown, V.K. and Sinclair, G.S. 1994. Reduction of black vine weevil larval growth by vesicular-arbuscular mycorrhizal infection. Entomol. Exp. Appl. 70: 115–119.

    Article  Google Scholar 

  37. Gange, A.C. and West, H.M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol. 128: 79–87.

    Article  Google Scholar 

  38. Ghering, C.A. and Witham, T G 1991. Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature. 353: 556–557.

    Article  Google Scholar 

  39. Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A. and Gianinazzi, S. 1996. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133: 45–57.

    Article  Google Scholar 

  40. Gianinazzi-Pearson, V. and Gianinazzi, S. 1983. The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil. 71: 197–209.

    Article  CAS  Google Scholar 

  41. Grime, J.P. Mackey, J.M.L., Hillier, S.H. and Read, D.J. 1987. Floristic diversity in a model system using experimental microcosms. Nature. 328: 420–422.

    Article  Google Scholar 

  42. Hall, I.R. 1978. Effects of endomycorrhizas on the competitive ability of white clover. N.Z. J. Agric. Res. 21: 509–515.

    Article  Google Scholar 

  43. Hall, J.R. and Hodges, T.K. 1966. Phosphorus metabolism of germinating oat seeds. Plant Physiol. 41: 1459–1464.

    Article  PubMed  CAS  Google Scholar 

  44. Hartnett, D.C., Hetrick, B.A.D., Wilson, G.W.T. and Gibson, D.J. 1993. Mycorrhizal influence on intra-and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81: 787–795.

    Article  Google Scholar 

  45. Hartnett, D.C., Samenus, R.J., Fischer, L.E. and Hetrick, B.A.D. 1994. Plant demographic responses to mycorrhizal symbiosis in tallgrass prairie. Oecologia. 99: 21–26.

    Article  Google Scholar 

  46. Hayman, D.S. 1983. The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61: 944–963.

    Google Scholar 

  47. Hendrix, S.D. 1988. Herbivory and its impact on plant reproduction. In Plant Reproductive Ecology. Eds. JL Doust and LL Doust. Oxford University Press, New York. pp 246–266.

    Google Scholar 

  48. Heppell, K.B., Shumway, D.L. and Koide, R.T. 1998. The effect of mycorrhizal infection of Abutilon theophrasti on competitiveness of offspring. Funct. Ecol. 12: 171–175.

    Article  Google Scholar 

  49. Hetrick, B.A.D., Wilson, G.W.T. and Hartnett, D.C. 1989. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can. J. Bot. 67: 2608–2615.

    Article  Google Scholar 

  50. Janos, D.P. 1980. Mycorrhizae influence tropical succession. Biotropica. 12 (suppl.): 56–64.

    Article  Google Scholar 

  51. Jensen, A. 1982. Influence of four vesicular-arbuscular mycorrhizal fungi on nutrient uptake and growth in barley (Hordeum vulgare). New Phytol. 90: 45–50.

    Article  CAS  Google Scholar 

  52. Jones, C.G. and Last, F.T. 1991 Ectomycorrhizae and trees: implications for aboveground herbivory. In Microbial Mediation of Plant-Herbivore Interactions. Eds. P Barbosa, VA Krischik and CG Jones. pp 65–103. John Wiley and Sons, New York, USA.

    Google Scholar 

  53. Kaufman, J.L. and Guitard, A.A. 1967. The effect of seed size on early plant development in barley. Can. J. Plant Sci. 47: 73–78.

    Article  Google Scholar 

  54. Kapulnik, Y., Volpin, H., Itzhaki, H., Ganon, D., Galili, S., David, R., Shaul, O., Elad, Y., Chet, I. and Okon, Y. 1996. Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol. 133: 59–64.

    Article  Google Scholar 

  55. Khanizadeh, S., Hamel, C., Kianmehr, H., Buszard, D. and Smith, D.L. 1995. Effect of three vesicular-arbuscular mycorrhizae species and phosphorus on reproductive and vegetative growth of three strawberry cultivars. J. Plant Nutri. 18: 1073–1079.

    Article  CAS  Google Scholar 

  56. Koide, R.T. 1991. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia. 85: 389–395.

    Article  Google Scholar 

  57. Koide, R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365–386.

    Article  CAS  Google Scholar 

  58. Koide, R.T. 1999. Ecological considerations of mycorrhizal symbioses. In Phosphorus in Plant Biology. Eds. J Lynch and J Deikman. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  59. Koide, R.T., Huenneke, L.F., Hamburg, S.P. and Mooney, H.A. 1988. Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an annual serpentine plant community. Funct. Ecol. 2: 335–344.

    Article  Google Scholar 

  60. Koide, R.T. and Li, M. 1991. Mycorrhizal fungi and the nutrient ecology of three oldfield annual plant species. Oecologia. 85: 403–412.

    Article  Google Scholar 

  61. Koide, R.T., Li, M., Lewis, J. and Irby,C. 1988. Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia. 77: 537–543.

    Article  Google Scholar 

  62. Koide, R.T. and Lu,X. 1992. Mycorrhizal infection of wild oats: maternal effects on offspring growth and reproduction. Oecologia. 90: 218–226.

    Google Scholar 

  63. Koide, R.T. and Lu, X. 1995. On the cause of offspring superiority conferred by mycorrhizal infection of Abutilon theophrasti. New Phytol. 131: 435–441.

    Article  Google Scholar 

  64. Koide, RT., Shumway, D.L. and Mabon, S.A. 1994. Mycorrhizal fungi and reproduction of field populations of Abutilon theophrasti Medic. ( Malvaceae ). New Phytol. 126: 123–130.

    Article  Google Scholar 

  65. Lambais, M.R. and Mehdy, M.C. 1993. Suppression of endochitinase, β-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Molec. Plant-Microbe Interact. 6: 75–83.

    Article  CAS  Google Scholar 

  66. Lau, T.-C., Lu, X., Koide, R.T. and Stephenson, A.G. 1995. Effects of soil fertility and mycorrhizal infection on pollen production and pollen grain size ofCucurbita pepo ( Cucurbitaceae ). Plant Cell Environ. 18: 169–177.

    Article  Google Scholar 

  67. Leake, J.R. 1994. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 127: 171–216.

    Article  Google Scholar 

  68. Lee, T.D. 1988. Patterns of fruit and seed production. In Plant Reproductive Ecology, Patterns and Strategies. Eds. J Lovett Doust and L Lovett Doust. Oxford University Press, New York, USA. pp 179–202.

    Google Scholar 

  69. Lewis, J.D. and Koide, R.T. 1990. Phosphorus supply, mycorrhizal infection and plant offspring vigour. Funct. Ecol. 4: 695–702.

    Article  Google Scholar 

  70. Lu, X. and Koide, R.T. 1991. Avena fatua L. seed and seedling nutrient dynamics as influenced by mycorrhizal infection of the maternal generation. Plant Cell Environ. 14: 931–939.

    Article  CAS  Google Scholar 

  71. Lu, X. and Koide, R.T. 1994. The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytol. 128: 211–218.

    Article  CAS  Google Scholar 

  72. Maffia, B. and Janos, D.P. 1993. Vesicular-arbuscular mycorrhizae influence seedling survival and size disparity in sunflower (Helianthus annuus L.) in dense, monospecific stands. In Abstracts of the Ninth North American Conference on Mycorrhizae. Eds. L Peterson and M Schelke, University of Guelph, Ontario, Canada. p 19.

    Google Scholar 

  73. Mason, P.A., Wilson, J., Last, F.T. and Walker, C. 1983. The concept of succession in relation to the spread of sheathing mycorrhizal fungi on inoculated tree seedlings growing in unsterile soils. Plant Soil. 71: 247–256.

    Article  Google Scholar 

  74. McGonigle, T.P. and Fitter, A.H. 1988. Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc. Royal Soc. Edinb. 94B: 25–32.

    Google Scholar 

  75. Merryweather, M. and Fitter, A. 1996. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132: 307–311.

    Article  CAS  Google Scholar 

  76. Miller, R.M. 1987. Mycorrhizae and succession. In Restoration Ecology, A Synthetic Approach to Ecological Research. Eds. WR Jordan III, ME Gilpin,. 1D Aber. Cambridge University Press, Cambridge, UK. pp 205–219.

    Google Scholar 

  77. Miller, R.M., Jarstfer, A.G. and Pillai, J.K. 1987. Biomass allocation in an Agropyron smithii — Glomus symbiosis. Amer. J. Bot. 74: 114–122.

    Article  Google Scholar 

  78. Modjo, H.S. and Hendrix, J.W. 1986. The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease. Phytopath. 76: 688–691.

    Article  Google Scholar 

  79. Moora, M. and Zobel, M. 1996. Effect of arbuscular mycorrhiza on inter-and intraspecific competition of two grassland species. Oecologia. 108: 79–84.

    Article  Google Scholar 

  80. Morandi, D. 1989. Effects of xenobiotics on endomycorrhizal infection and isoflavonoid accumulation in soybean roots. Plant Physiol. Biochem. 27: 697–701.

    CAS  Google Scholar 

  81. Morandi, D. and Bailey, J.A. 1984. Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol. Plant Path. 24: 357–364.

    Article  CAS  Google Scholar 

  82. Mullen, R.B. and Schmidt, S.K. 1993. Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia. 94: 229–234.

    Article  Google Scholar 

  83. Newsham, K.K., Fitter, A.H. and Watkinson, A.R. 1994. Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J. Ecol. 82: 805–814.

    Article  Google Scholar 

  84. Newsham, K.K., Fitter, A.H. and Watkinson, A.R. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. TREE 10: 407–411.

    PubMed  CAS  Google Scholar 

  85. Parrish, J.A.D. and Bazzaz, F.A. 1985. Nutrient content of Abutilon theophrasti seeds and the competitive ability of the resulting plants. Oecologia. 65: 247–251.

    Article  Google Scholar 

  86. Patton, D.C. and Ford, H.A. 1983. The influence of plant characters and honeyeater size on levels of pollination in Australian plants. In Handbook of Experimental Pollination Biology. Eds. CE Jones and RJ Little. Van Nostrand Reinhold, New York. pp 235–248.

    Google Scholar 

  87. Powell, C.L. 1981. Inoculation of barley with efficient mycorrhizal fungi stimulates seed yield. Plant Soil. 59: 487–489.

    Article  CAS  Google Scholar 

  88. Powell, C.L. and Bates, P.M. 1981. Ericoid mycorrhizas stimulate fruit yield of blueberry. HortSci. 16: 655–656.

    Google Scholar 

  89. Rabin, L.B. and Pacovsky, R.S. 1985. Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J. Econ. Entomol. 78: 1358–1363.

    Google Scholar 

  90. Read, D.J. 1991. Mycorrhiza in ecosystems. Experientia 47: 376–391.

    Article  Google Scholar 

  91. Ries, S.L. and Eversen, E.H. 1973. Protein content and seed size relationship with seedling vigor of wheat cultivars. Agron. J. 65: 884–886.

    Article  Google Scholar 

  92. Sanders, LR. and Koide, R.T. 1993. Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old-field annuals. Funct. Ecol. 7: 77–84.

    Google Scholar 

  93. Sanders, I., Koide, R. and Shumway, D. 1999. Diversity and structure in natural communities: the role of the mycorrhizal symbiosis. In Mycorrhizae: Structure, Function, Molecular Biology and Biotechnology, second edition. Ed. A Vanna, B. Hock. Springer, Berlin, Germany.

    Google Scholar 

  94. Sattin, M., Zanin, G. and Berti, A. 1992. Case history for weed competition/population ecology: velvetleaf (Abutilon theophrasti) in corn (Zea mays). Weed Technol. 6: 213–219.

    Google Scholar 

  95. Schaffer, W.H. and Schaffer, M.V. 1979. The adaptive significance of variations in reproductive habit in the Agavaceae. II. Pollinator foraging behavior and selection for increased reproductive expenditure. Ecol. 60: 1051–1069.

    Article  Google Scholar 

  96. Schemske, D.W. 1980. Evolution of floral display in the orchid Brassavola nodosa. Evol. 34: 489–493.

    Article  Google Scholar 

  97. Schemske, D.W. 1980. Floral ecology and hummingbird pollination of Combretum farinosum in Costa Rica. Biotropica. 12: 169–181.

    Article  Google Scholar 

  98. Schemske, D.W., Wilson, M.F., Melampy, M.N., Miller, L.J., Verner, L., Schemske, K.M. and Best, L.B. 1978. Flowering ecology of some woodland herbs. Ecol. 59: 351–366.

    Article  Google Scholar 

  99. Schenck, N.C. and Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effect on soybean at four soil temperatures. New Phytol. 92: 193–201.

    Article  Google Scholar 

  100. Schlessman, M.A. 1988. Gender diphasy (“sex choice”). In Plant Reproductive Ecology. Eds. JL Doust and LL Doust. Oxford University Press, New York. pp 139–156.

    Google Scholar 

  101. Schwab, S.M., Menge, J.A. and Leonard, R.T. 1983. Comparison of stags of vesicular-arbuscular mycorrhiza formation in sudangrass grown at two levels of phosphorus nutrition. Amer. J. Bot. 70: 1225–1232.

    Article  CAS  Google Scholar 

  102. Schweizer, C.J. and Ries, S.K. 1969. Protein content of seed: increase improves growth and yield. Science. 165: 73–75.

    Article  PubMed  CAS  Google Scholar 

  103. Shumway, D.L. and Koide, R.T. 1994. Within-season variability in mycorrhizal benefit to reproduction in Abutilon theophrasti Medic. Plant Cell Environ. 17: 821–827.

    Article  Google Scholar 

  104. Shumway, D.L. and Koide, R.T. 1995. Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of Abutilon theophrasti. J. Ecol. 83: 613–620.

    Article  Google Scholar 

  105. Smith, S.E. and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 221–244.

    Article  CAS  Google Scholar 

  106. Smith, S.E. and Read, D.J. 1997. Mycorrhizal Symbiosis, Second Edition. Academic Press, San Diego. 605 pp.

    Google Scholar 

  107. Solaiman, Z. and Saito, M. 1997. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol. 136: 533–538.

    Article  CAS  Google Scholar 

  108. Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A. and Bonfante-Fasolo, P. 1989. Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177: 447–455.

    Article  CAS  Google Scholar 

  109. Spanu, P. and Bonfante-Fasolo, P. 1988. Cell-wall-bound peroxidase activity in roots of mycorrhizal Album porrum. New Phytol. 109: 119–124.

    Article  CAS  Google Scholar 

  110. Stanley, M.R., Koide, R.T. and Shumway, D.L. 1993. Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field. Oecologia. 94: 30–35.

    Article  Google Scholar 

  111. Stephenson, A.G., Poulton, J.L., Lau, T.C. and Koide, R.T. 1999. Effects of soil phosphorus level and mycorrhizal infection on the male function of plants. In Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes. Eds. JP Lynch and J Deikman American Society of Plant Physiologists, Rockville, MD, USA. pp 52–67.

    Google Scholar 

  112. Sylvia, D.M. 1983. Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil. 71: 299–302.

    Article  Google Scholar 

  113. Taber, R.A. 1982. Occurrence of Glomus spores in weed seeds in soil. Mycologia. 74: 515–520.

    Article  Google Scholar 

  114. Tester, M., Smith, S.E., Smith, F.A. and Walker, N.A. 1986. Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytol. 103: 375–390.

    Article  Google Scholar 

  115. Thompson, J.P. and Wildermuth, G.B. 1989. Colonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. Can. J. Bot. 69: 687–693.

    Google Scholar 

  116. Vejsadova, H., Siblikova, D., Gryndler, M., Simon, T. and Miksik, I 1993. Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J. Plant Nutr. 16: 619–629.

    Article  Google Scholar 

  117. Wallace, L.L. 1981. Growth, morphology and gas exchange of mycorrhizal and nonmycorrhizal Panicum coloratum L., a C4 grass species, under different clipping and fertilization regimes. Oecologia. 49: 272–278.

    Article  Google Scholar 

  118. Weiner, J. 1988. The influence of competition on plant reproduction. In Plant Reproductive Ecology Patterns and Strategies. Eds. J Lovett Doust and L Lovett Doust. Oxford University Press, New York. pp 228–245.

    Google Scholar 

  119. Weiner, J. 1990. Asymmetric competition in plant populations. Trends Ecol. Evol. 5: 360–364.

    Article  PubMed  CAS  Google Scholar 

  120. West, H.M., Fitter, A.H. and Watkinson, A.R. 1993. The influence of three biocides on the fungal associates of the roots of Vulpia ciliata ssp. ambigua under natural conditions. J. Ecol. 81: 345–350.

    Article  Google Scholar 

  121. West, H.M., Fitter, A.H. and Watkinson, A.R. 1993. Response of Vulpia ciliata ssp. ambigua to removal of mycorrhizal infection and to phosphate application under natural conditions. J. Ecol. 81: 351–358.

    Article  Google Scholar 

  122. Wilson, J.B. 1988. The effect of initial advantage on the course of plant competition. Oikos. 51: 19–24.

    Article  Google Scholar 

  123. Wyatt, R. 1981. The reproductive biology ofAsclepias tuberosa. II. Factors determining fruit set. New Phytol. 88: 375–385.

    Article  Google Scholar 

  124. Wyss, P., Boller, T. and Wiemken, A. 1991. Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia. 47: 395–399.

    Article  CAS  Google Scholar 

  125. Yallop, A. and Davy, A. 1994. Growth response disparities — a case for mycorrhizal mimicry? In Fourth European Symposium on Mycorrhizas, Abstracts. Consejo Superior de Investigaciones Cientificas, Estacion Experimental del Zaidin. CSIC, Granada. p 72.

    Google Scholar 

  126. Zhang, M., Nyborg, M. and McGill, W.B. 1990. Phosphorus concentration in barley (Hordeum vulgare L.) seed: influence on seedling growth and dry matter production. Plant Soil. 122: 79–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koide, R.T. (2000). Mycorrhizal Symbiosis and Plant Reproduction. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics