Advertisement

Stomatal Behavior of Arbuscular Mycorrhizal Plants

Chapter

Abstract

Arbuscular mycorrhizal (AM) symbioses can affect the water balance of amply watered and droughted plants. The mycorrhizal influence most often examined within the field of water relations has been alteration of stomatal behavior. This review summarizes possible biophysical and biochemical mechanisms, discussing how AM fungus-induced changes in tissue hydration, plant size, tissue elemental concentrations and nonhydraulic root-to-shoot signaling may affect stomatal regulation. The review also provides a brief catalog of published mycorrhizal effects on stomata behavior.

Key words

drought stress stomatal conductance nutritional effects nonhydraulic signaling plant growth regulators 

Abbreviations

ABA

abscisic acid

AM

arbuscular mycorrhizal

NM

nonmycorrhizal

gs

stomatal conductance

Ψ

water potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, E.B. and Allen, M.F. 1986. Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytol. 104: 559–571.CrossRefGoogle Scholar
  2. 2.
    Allen, M.F. 1982. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis ( H.B.K.) Lag ex Steud. New Phytol. 91: 191–196.CrossRefGoogle Scholar
  3. 3.
    Allen, M.F. and Boosalis,M.G. 1983. Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol. 93: 67–76.CrossRefGoogle Scholar
  4. 4.
    Allen, M.F., Moore, T.S. Jr. and Christensen, M. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J. Bot. 58: 371.Google Scholar
  5. 5.
    Allen, M.F., Moore, T.S. Jr. and Christensen, M. 1982. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizal fungi. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J. Bot. 60: 468–471.Google Scholar
  6. 6.
    Allen, M.F., Smith, W.K., Moore, T.S. Jr. and Christensen, M. 1981. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytol. 88: 683–693.CrossRefGoogle Scholar
  7. 7.
    Andersen, C.P., Markhart, A.H., Dixon, R.K. and Sucoff, E.I. 1988. Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol. 109: 465–471.CrossRefGoogle Scholar
  8. 8.
    Atkinson, D. and Davison, A.W. 1972. The influence of phosphorus deficiency on the transpiration of Arctium minus Bernh. New Phytol. 71: 317–326.CrossRefGoogle Scholar
  9. 9.
    Atkinson, C.J., Mansfield, T.A. and Davies, W.J. 1991. Does calcium in xylem sap regulate stomatal conductance? New Phytol. 116: 19–27.CrossRefGoogle Scholar
  10. 10.
    10.Atkinson, C.J., Mansfield, T.A., McAinsh, M.R., Brownlee, C. and Hetherington, A.M. 1990. Interactions of calcium with abscisic acid in the control of stomatal aperture. Biochem. Physiol. Pflanz 186: 333–339.Google Scholar
  11. 11.
    11.Augé, R.M. 1989. Do VA mycorrhizae enhance transpiration by affecting host phosphorus content ? J. Plant Nutri. 12: 743–753.CrossRefGoogle Scholar
  12. 12.
    Augé, R.M. 1999. Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza (In press).Google Scholar
  13. 13.
    I3.Augé, R.M. and Duan, X. 1991. Mycorrhizal fungi and nonhydraulic root signals of soil drying. Plant Physiol. 97: 821–824.CrossRefGoogle Scholar
  14. 14.
    14.Augé, R.M., Duan, X., Ebel, R.C. and Stodola, A.J. 1994. Nonhydraulic signaling of soil drying in mycorrhizal maize. Planta 193: 74–82.Google Scholar
  15. 15.
    15.Augé, R.M., Schekel, K.A. and Wample, R.L. 1986a. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107–116.CrossRefGoogle Scholar
  16. 16.
    16.Augé, R.M., Schekel, K.A. and Wample, R.L. 1986b. Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in response to drought stress. Plant Physiol. 82: 765–770.CrossRefGoogle Scholar
  17. 17.
    17.Augé, R.M., Schekel, K.A. and Wample, R.L. 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291–302.CrossRefGoogle Scholar
  18. 18.
    18.Augé, R.M. and Stodola, J.W. 1990. Apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol. 115: 285–295.CrossRefGoogle Scholar
  19. 19.
    19.Augé, R.M., Stodola, A.J., Brown, M.S. and Bethlenfalvay, G.J. 1992. Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol. 120: 117–125.CrossRefGoogle Scholar
  20. 20.
    20.Augé, R.M., Stodola, A.J., Ebel, R.C. and Duan, X.R. 1995. Leaf elongation and water relations of mycorrhizal sorghum in response to partial soil drying: two Glomus species at varying phosphorus fertilization. J. Exp. Bot. 46: 297–307.CrossRefGoogle Scholar
  21. 21.Awotoye, O.O., Atayese, M.O., Osonubi, 0., Mulongoy, K. and Okali, D U U. 1992. Response of some tropical nitrogen-fixing woody legumes to drought and inoculation with mycorrhiza. In: Biological Nitrogen Fixation and Sustainability of Tropical Agriculture. Mulongoy, K., Gueye, M., Spencer, D.S.C. ( eds ), Wiley-Sayce Co-Publication. pp. 67–77.Google Scholar
  22. 22.
    22.Azcón, R., Gomez, M. and Tobar, R. 1996. Physiological and nutritional responses by Lactuca sativa to nitrogen sources and mycorrhizal fungi under drought. Biol. Fertil. Soils 22: 156–161.CrossRefGoogle Scholar
  23. 23.
    23.Baas, R. and Kuiper, D. 1989. Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to internal cytokinin Physiol. Plantarum 76: 211–215.CrossRefGoogle Scholar
  24. 24.
    24.Bates, L.M. and Hall, A.E. 1981. Stomatal closure with soil moisture depletion not associated with changes in bulk water status. Oecologia 50: 62–65.CrossRefGoogle Scholar
  25. 25.Bethlenfalvay, G.J., Thomas, R.S., Dakessian, S., Brown, M.S., Ames, R.N. and Whitehead, E.E. 1988. Mycorrhizae in stressed environments: effects on plant growth, endophyte development, soil stability and soil water. In: Arid-lands: Today and Tomorrow. Hutchinson, C.F., Timmermann, B.N. (eds), Westview Press Inc., Boulder, CO. pp. 1015–1029.Google Scholar
  26. 26.
    26.Bethlenfalvay, G.J., Brown, M.S., and Franson, R. 1990. Glycine-Glomus-Rhizobium symbiosis. X. Relationships between leaf gas exchange and plant and soil water status in nodulated, mycorrhizal soybean under drought stress. Plant Physiol. 94: 723–728.CrossRefGoogle Scholar
  27. 27.
    27.Bethlenfalvay, G.J., Brown, M.S., Mihara, K. and Stafford, A.E. 1987. Glycine-GlomusRhizobium symbiosis. V. Effects of mycorrhizae on nodule activity and transpiration in soybeans under drought stress. Plant Physiol. 85: 115–119.CrossRefGoogle Scholar
  28. 28.
    28.Bethlenfalvay, G.J. and Schüepp, H. 1994. Arbuscular mycorrhizas and agrosystem stability. In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural ecosystems. Gianinazzi, S., Schuepp, H. (eds),. Birkhauser Verlag, Basel, Switzerland. pp 117–132CrossRefGoogle Scholar
  29. 29.
    Bildusas, I.J., Dixon, R.K., Pfleger, F.L. and Stewart, E.L. 1986. Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Phytol. 102: 303–311.CrossRefGoogle Scholar
  30. 30.
    Bradbury, I.K. and Malcolm, D.C. 1977. The effect of phosphorus and potassium on transpiration, leaf diffusive resistance and water-use effciency in Sitka spruce (Picea sitchensis) seedlings. J. Appl. Ecol. 14: 631–641.CrossRefGoogle Scholar
  31. 31.
    Brown, D. and Rothery, P. 1993. Models in Biology: Mathematics, Statistics and Computing. John Wiley, NY, 285 pp.Google Scholar
  32. 32.
    Bryla, D.R. and Duniway, J.M. 1997. Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. New Phytologist 136: 581–590.CrossRefGoogle Scholar
  33. 33.
    Bryla, D.R. and Duniway, J.M. 1998. The influence of the mycorrhiza Glomus etunicatum on drought acclimation in safflower and wheat. Physiol. Plant. 104: 87–96.CrossRefGoogle Scholar
  34. 34.
    Burke, J.J., Mahan, J.R. and Hatfield, J.L. 1988. Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production. Agron. J. 80: 553–556.CrossRefGoogle Scholar
  35. 35.
    Busse, M.D. and Ellis, J.R. 1985. Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Can. J. Bot. 63: 2290–2294.CrossRefGoogle Scholar
  36. 36.
    Christensen, M. and Allen, M.F. 1979. Effects of VA mycorrhizae on water stress tolerance and hormone balance in native western plant species. 1978 Final Report to the Rocky Mountain Institute of Energy and Environment.Google Scholar
  37. 37.
    Christensen, M. and Allen,M.F. 1980. Effects of VA mycorrhizae on water stress tolerance and hormone balance in native western plant species. 1979 Final Report to the Rocky Mountain Institute of Energy and Environment.Google Scholar
  38. 38.
    Cornish, K. and Zeevaart, J.A.D. 1985. Abscisic acid accumulation by roots of Xanthium strumarium L. and Lycopersicon esculentum Mill in relation to water stress. Plant Physiol. 79: 653–658.CrossRefGoogle Scholar
  39. 39.
    Cowan, I.R. 1977. Stomatal behavior and environment. Adv. Bot. Res. 4: 117–228.CrossRefGoogle Scholar
  40. 40.
    Cowan, LR. and Farquhar, G.D. 1977. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exper. Biol. 31: 471–505.Google Scholar
  41. 41.
    Croker, J.L., Witte, W.T., Augé, R.M. 1998. Stomatal sensitivity to nonhydraulic root-to-shoot signals of partial soil drying in six temperate, deciduous forest trees. J. Exp. Bot. 49: 761–774.Google Scholar
  42. 42.
    Cui, M. and Nobel, P.S. 1992. Nutrient status, water uptake and gas exchange for 3 desert succulents infected with mycorrhizal fungi New Phytol. 122: 643–649.Google Scholar
  43. 43.
    Daeter, W., Slovik, S. and Hartung, W. 1993. The pH gradients in the root system and the abscisic acid concentration in xylem and apoplastic saps. Philos. Trans. R. Soc. Lond. [Biol.]. 341: 49–56.CrossRefGoogle Scholar
  44. 44.
    Dakessian, S., Brown, M.S. and Bethlenfalvay, G.J. 1986. Relationship of mycorrhizal growth enhancement and plant growth with soil water and texture. Plant Soil 94: 439–443.CrossRefGoogle Scholar
  45. 45.
    Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch H.J. and Bothe, H. 1992. Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol. 141: 33–39.Google Scholar
  46. 46.
    Davies, F.T. Jr., Castro-Jimenez, Y. and Duray, S.A. 1987. Mycorrhizae, soil amendments, water relations and growth of Rosa mult/ora under reduced irrigation regimes. Scientia Hortic. 33: 261–267.CrossRefGoogle Scholar
  47. 47.
    Davies, W.J., Mansfield, T.A. and Hetherington, A.M. 1990. Sensing of soil water status and the regulation of plant growth and development. Plant Cell Environ. 13: 709–719.CrossRefGoogle Scholar
  48. 48.
    Davies, W.J. and Zhang, J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Molec. Biol. 42: 55–76.CrossRefGoogle Scholar
  49. 49.
    Davies, F.T., Potter, J.R. and Linderman, R.G. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol. 139: 289–294.CrossRefGoogle Scholar
  50. 50.
    Davies, F.T., Potter, J.R. and Linderman, R.G. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration — response in gas exchange and water relations. Physiol Plantarum 87: 45–53.CrossRefGoogle Scholar
  51. 51.
    Davies, W.J., Tardieu, F. and Trejo, C.L. 1994. How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104: 309–14.Google Scholar
  52. 52.
    Davies, F.T., Svenson, S.E., Henderson, J.C., Phavaphutanon, L., Duray, S.A., OlaldePortugal, V., Meier, C.E. and Bo, S.H. 1996. Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol. 16: 985–993.CrossRefGoogle Scholar
  53. 53.
    De Silva. D.L.R., Cox, R.C., Hetherington, A.M. and Mansfield, T.A. 1986. The role of abscisic acid and calcium in determining the behavior of adaxial and abaxial stomata. New Phytol. 104: 41–51.CrossRefGoogle Scholar
  54. 54.
    Desai, M.C. 1937. Effect of certain nutrient deficiencies on stomatal behavior. Plant Physiol. 12: 253–283.CrossRefGoogle Scholar
  55. 55.
    Di, J.J. and Allen, E.B. 1991. Physiological responses of 6 wheatgrass cultivars to mycorrhizae. J. Range. Manage. 44: 336–341.Google Scholar
  56. 56.
    Dixon, R.K., Garrett, H.E. and Cox, G.S. 1988a. Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular-arbuscular mycorrhizae. Tree Physiol. 4: 9–18.CrossRefGoogle Scholar
  57. 57.
    Dixon, R.K., Garrett, H.E. and Cox, G.S. 1988b. Cytokinin activity in Citrus jambhiri Lush. seedlings colonized by by vesicular-arbuscular mycorrhizal fungi. Trees 2: 39–44.CrossRefGoogle Scholar
  58. 58.
    Dixon, R.K., Rao, M.V. and Garg, V.K. 1994. Water relations and gas exchange of mycorrhizal Leucaena leucocephala seedlings. J. Tropical For. Sci. 6: 542–552.Google Scholar
  59. 59.
    Drtige, U. and Schönbeck, F. 1992. Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant Physiol. 141: 40–48.Google Scholar
  60. 60.
    Duan, X., Neuman, D S, Reiber, J.M., Green, C.D., Saxton, A.M. and Augé, R.M. 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot. 47: 1541–1550.Google Scholar
  61. 61.
    Eavis, B.W., and Taylor, H.M. 1979. Transpiration of soybeans as related to leaf area, root length, and soil water content. Agron. J. 71: 441–445.Google Scholar
  62. 62.
    Ebel, R.C., Duan, X., Still, D.W. and Augé, R.M. 1997. Xylem sap abscisic concentration and stomatal conductance of mycorrhizal Vignes unguiculata in drying soil. New Phytol. 135: 755–761.CrossRefGoogle Scholar
  63. 63.
    Ebel, R.C., Stodola, A.J.W., Duan, X. and Augé, R.M. 1994. Non-hydraulic root-to-shoot signaling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New. Phytol. 127: 495–505.Google Scholar
  64. 64.
    Ebel, R.C., Welbaum, G.E., Gunatilaka, M., Nelson, T. and Augé, R.M. 1996. Arbuscular mycorrhizal symbiosis and nonhydraulic signaling of soil drying in Vigna unguiculata ( L.) Walp. Mycorrhiza 6: 119–127.Google Scholar
  65. 65.
    Edriss, M.H., Davis, R.M. and Burger, D.W. 1984. Influence of mycorrhizal fungi on cytokinin production in sour orange. J. Amer. Soc. Hort. Sci. 109: 587.Google Scholar
  66. 66.
    Eissenstat, D.M., Graham, J.H., Syvertsen, J.P. and Drouillard, D.L. 1993. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann. Bot. 71: 1–10.Google Scholar
  67. 67.
    Ellis, J.R., Larsen, H.J. and Boosalis, M.G. 1985. Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. Plant Soil 86: 369–378.CrossRefGoogle Scholar
  68. 68.
    Esch, H., Hundeshagen, B., Schneiderpoetsch, H. and Bothe, H. 1994. Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2- fixing cyanobacteriumAnabaena variabilis. Plant Sci. 99: 9–16.CrossRefGoogle Scholar
  69. 69.
    Faber, B.A., Zasoski, R.J., Munns, D.N. and Shackel, K. 1991. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J. Bot. 69: 87–94.Google Scholar
  70. 70.
    Fahad, A.A., Mielke, L.N., Flowerday, A.D. and Schwartzendruber, D. 1982. Soil physical properties as affected by soybean and other cropping sequences. Soil Sci. Soc. Am. J. 46: 377–381.Google Scholar
  71. 71.
    Fay, P., Mitchell, D.T. and Osborne, B.A. 1996. Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132: 425–433.CrossRefGoogle Scholar
  72. 72.
    Field, C.B. 1987. Leaf-age effects on stomatal conductance. In: Stomatal Function. Zeiger, E., Farquhar, G.D., Cowan, I.R. (eds), Stanford University Press, Stanford, California. pp. 367–3 84.Google Scholar
  73. 73.
    Fitter, A.H. 1985. Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol. 99: 257–265.CrossRefGoogle Scholar
  74. 74.
    Fitter, A.H. 1988. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39: 595–603.Google Scholar
  75. 75.
    Franson, R.L, Milford, S.B and Bethlenfalvay, G.J. 1991. The Glycine-Glomus-Bradyrhizobium symbiosis, XI. Nodule gas exchange and efficiency as a function of soil and root water status in mycorrhizal soybean. Physiol. Plantarum 83: 476–482.Google Scholar
  76. 76.
    Fußeder, A., Wartinger, A., Hartung, W., Schulze, E.D. and Heilmeier, H. 1992. Cytokinins in the xylem sap of desert-grown almond (Prunus dulcis) trees — daily courses and their possible interactions with abscisic acid and leaf conductance. New Phytol. 122: 45–52.CrossRefGoogle Scholar
  77. 77.
    Gemma, J.N., Koske, R.E., Roberts, E.M., Jackson, N. and De Antonis, K. 1997. Mycorrhizal fungi improve drought resistance in creeping bentgrass. J. Turfgrass Sci. 73: 15–29.Google Scholar
  78. 78.
    George, E., Haussler, K., Vetterlein, D., Gorgus, E. and Marschner, H. 1992. Water nutrient translocation by hyphae of Glomus mosseae. Can. J. Bot. 70: 2130–2137.Google Scholar
  79. 79.
    Ginzberg, I., David, R., Shaul, O., Elad, Y., Wininger, S., Ben-Dor, B., Badani, H., Fang, Y.W., Van Rhijn, P., Li, Y., Hirsch, A.M. and Kapulnik, Y. 1998. Glomus intraradices colonization regulates gene expression in tobacco roots. Symbiosis 25: 145–157.Google Scholar
  80. 80.
    Goicoechea, N., Antolin, M.C. and Sanchez-Diaz, M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol. Plantarum 100: 989–997.Google Scholar
  81. 81.
    Gollan, T., Schurr, U. and Schulze, E.D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. 1. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ. 15: 551–559.Google Scholar
  82. 82.
    Graham, J.H. and Syvertsten, J.P. 1984. Influence of vesicular-arbuscular mycorrhiza on the hydraulic conductivity of roots of two citrus rootstocks. New Phytol. 97:277–84. 113: 29–36.CrossRefGoogle Scholar
  83. 83.
    Graham, J.H. and Syvertsten, J.P. 1985. Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol. 101: 667–676.CrossRefGoogle Scholar
  84. 84.
    Graham, J.H. and Syvertsen, J.P. 1987. Do mycorrhizae influence the drought tolerance of citrus? J. Environ. Hortic. 5: 37–39.Google Scholar
  85. 85.
    Graham, J H and Syvertsten, J.P. 1989. Vesicular-abuscular mycorrhizas increase chloride concentration in citrus seedlings. New Phytol.Google Scholar
  86. 86.
    Graham, J H, Syvertsten, J.P. and Smith, M.L. 1987. Water relations of mycorrhizal and phosphorus-fertilized non-mycorrhizal Citrus under drought stress. New Phytol. 105: 411–419.CrossRefGoogle Scholar
  87. 87.
    Greacen, E.L and Williams, J. 1983. Physical properties and water relations: soil mechanical properties and water movement; soil hydrology In: Soils: An Australian Viewpoint, Commonwealth Scientific and Industrial Organization, East Melbourne, Vic. CSIRO and Academic Press, New York. pp. 499–530.Google Scholar
  88. 88.
    Green, C.D., Stodola, A. and Augé, R.M. 1998. Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium and phosphorus. Mycorrhiza 8: 93–99.CrossRefGoogle Scholar
  89. 89.
    Gupta, R.K. 1991. Drought response in fungi and mycorrhizal plants. Handbook of Applied Mycology 1: 55–75.Google Scholar
  90. 90.
    Hardie, K. 1985. The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol. 101: 677–684.CrossRefGoogle Scholar
  91. 91.
    Hardie, K. and Leyton L. 1981. The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytol. 89: 599–608.Google Scholar
  92. 92.
    Hartmond, U., Schaesberg, N.V., Graham, J.H. and Syvertsen, J.P. 1987. Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings Plant Soil 104: 37–43.Google Scholar
  93. 93.
    Hartung, W. and Radin, J.W. 1989. Abscisic acid in the mesophyll apoplast and in the root xylem sap of water-stressed plants: the significance of pH gradients. In: Current Topics in Plant Biochemistry and Physiology, Vol. 8. Randall, D.D., Blevins, D.G., (eds), Univerisity of Missouri, Columbia, MO. pp. 110–124.Google Scholar
  94. 94.
    Hartung, W., Radin, J.W. and Hendrix, D.L. 1988. Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves. Plant Physiol. 86: 908 - 913.CrossRefGoogle Scholar
  95. 95.
    Hartung, W., Wilkinson, S. and Davies, W.J. 1998. Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. J. Exp. Bot. 49: 361–367.Google Scholar
  96. 96.
    Henderson, J.C. and Davies, F.T. 1990. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L cv Ferdy is independent of leaf elemental content. New Phytol. 115: 503–510.CrossRefGoogle Scholar
  97. 97.
    Huang, R.S., Smith, W.K. and Yost, R.S. 1985. Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in Leucaena leucocephala ( LAM.) De wit. New Phytol. 99: 229–243.Google Scholar
  98. 98.
    Ibrahim, M A, Campbell, W.F., Rupp, L.A. and Allen, E.B. 1990. Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. Arid Soil Res. Rehab. 4: 99–107.Google Scholar
  99. 99.
    Incoll, L.D. and Jewer, P.C. 1987. Cytokinins and stomata. In: Stomatal Function. Zeiger, E., Farquhar, G.D., Cowan, I.R. (eds), Stanford Universiity Press, Stanford, California. pp. 281–292.Google Scholar
  100. 100.
    Jarvis, A.J. and Davies, W.J. 1998. The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot. 49: 399–406.Google Scholar
  101. 101.
    Jia, W. and Zhang, J. 1997. Comparison of exportation and metabolism of xylem-delivered ABA in maize leaves at different water status and xylem sap pH. Plant Growth Reg. 21: 43–49CrossRefGoogle Scholar
  102. 102.
    Johnson, C.R. and Hummel, R.L. 1985. Influence of mycorrhizae and drought stress on growth of Poncirus x Citrus seedlings HortScience 20: 754–755.Google Scholar
  103. 103.
    Johnson, C.R., Menge, J.A., Schwab, S. and Ting, I.P. 1982. Interaction of photoperiod and vesicular-arbuscular mycorrhizae on growth and metabolism of sweet orange. New Phytol. 90: 665–669.CrossRefGoogle Scholar
  104. 104.
    Jones, H.G. 1990a. Control of growth and stomatal behavior at the whole plant level: effects of soil drying. In: Importance of Root to Shoot Communication in the Responses to Environmental Stress. Davies, W.J., Jeffcoat, B. (eds),. Mongraph No. 1, British Society for Plant Growth Regulation, University of Bristol, England pp. 81–93Google Scholar
  105. 105.
    Jones, H.G. 1990b. Physiological aspects of the control of water status in horticultural crops. HortSci. 25: 19–26.Google Scholar
  106. 106.
    Jones, H.G. 1998. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 49: 387–398.Google Scholar
  107. 107.
    Jones, H.G. and Sutherland, R.A. 1991. Stomatal control of xylem embolism. Plant Cell Environ. 6:6–7–612.Google Scholar
  108. 108.
    Jones, R.J. and Mansfield, T.A. 1970. Suppression of stomatal opening in leaves treated with abscisic acid. J. Exp. Bot. 21: 714–719.Google Scholar
  109. 109.
    Khalil, A A M and Grace, J. 1993. Does xylem sap ABA control the stomata! behavior of water-stressed sycamore (Acer pseudoplatanus L.) seedlings? J. Exp. Bot. 44: 1127–1134.Google Scholar
  110. 110.
    Koide, R. 1985. The effect of VA mycorrhizal infection and phosphorus status on sunflower hydraulic and stomata! properties. J. Exp. Bot. 36: 1087–1098.Google Scholar
  111. 111.
    Koide, R. 1993. Physiology of the mycorrhizal plant. Adv. Plant Path. 9: 33–54.Google Scholar
  112. 112.
    Koide, R., Robichaux, R., Morse, S. and Smith, C. 1989. Plant water status, hydraulic resistance and capacitance. In: Physiological Plant Ecology: Field Methods and Instrumentation. Pearcey, R.W., Ehleringer, J.R., Mooney, H.A., Runde!, P. (eds), Chapman and Hall, London. pp. 161–183.CrossRefGoogle Scholar
  113. 113.
    Koide, R.T. and Schreiner, R.P. 1994. Alteration of leaf movement of Abutilon theophrasti ( Malvaceae) by mycorrhizal infection. Functional Ecol. 8: 384–388.Google Scholar
  114. 114.
    Kothari, S.K., Marschner, H. and George, E. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 116: 303–311.CrossRefGoogle Scholar
  115. 115.
    Kramer, P.J. and Boyer, J.S. 1995. Water relations of plants and soils, p. 104. Academic Press, New York, 495 pp.Google Scholar
  116. 116.
    Levitt, J. 1980. Responses of plants to environmental stresses, 2nd ed. Academic Press, New York.Google Scholar
  117. 117.
    Levy, Y., Krikun, J. 1980. Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol. 85: 25–31.CrossRefGoogle Scholar
  118. 118.
    Levy, Y., Syvertsen, J.P. and Nemec, S. 1983. Effect of drought stress and vesicular-arbusuclar mycorrhiza on citrus transpiration and hydraulic conductivity of roots. New Phytol. 93: 61–66.CrossRefGoogle Scholar
  119. 119.
    Mahan, J R and Upchurch, D.R. 1988. Maintenance of constant leaf temperature by plants I Hypothesis — limited homeothermy. Env. Exp. Bot. 28: 351–357.Google Scholar
  120. 120.
    Mansfield, T.A., Travis, A.J. and Jarvis, R.G. 1981. Responses to light and carbon dioxide. In: Stomatal Physiology. Jarvis, R.G., Mansfield, T.A. (eds), pp. 119–135. Cambridge University Press, Cambridge.Google Scholar
  121. 121.
    Mansfield, T.A., Hetherington, A.M. and Atkinson, C.J. 1990. Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 55–75.Google Scholar
  122. 122.
    Mathur, N. and Vyas, A. 1995. I. Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J. Plant Physiol. 147: 328–330.CrossRefGoogle Scholar
  123. 123.
    McAinsh, M.R, Brownlee, C. ar 4.Hetherington, A.M. 1990. Abscisic-acid-induced elevation of guard cell cytosolic Ca precedes stomatal closure. Nature (London) 343: 186–188.Google Scholar
  124. 124.
    Meidner, H. and Mansfield, T.A. 1968. Physiology of stomata. McGraw Hill, New York.Google Scholar
  125. 125.
    Meinzer, F.C. and Grantz, D.A. 1990. Stomatal conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environ. 13: 383–388.CrossRefGoogle Scholar
  126. 126.
    Meinzer, F.C. Grantz, D.A. and Smit, B. 1991. Root signals mediate coordination of stomata! and hydraulic conductance in growing sugarcane. Aust. J. Plant Physiol. 18: 329–338Google Scholar
  127. 127.
    Miller, R.M. and Jastrow, J.D. 1994. Vesicular-arbuscular mycorrhizae and biogeochemical cycling In Mycorrhizae and Plant Health. Pfleger, F.L., Linderman, R.G. (eds), APS Press, St. Paul, Minnesota. pp 189–212.Google Scholar
  128. 128.
    Nagarajah, S. and Ratnasuriya, G.B. 1978. The effects of phosphorus and potassium deficiencies on transpiration in tea (Camellia sinensis). Physiol. Plantarum 42: 103–108.Google Scholar
  129. 129.
    Nelsen, C.E. 1987. The water relations of vesicular-arbuscular mycorrhizal systems. In: Ecophysiology of VA Mycorrhizal Plants. Safer, G.R. (ed), CRC Press, Boca Raton, FL. pp 71–91.Google Scholar
  130. 130.
    Nelsen, C.E. and Safer, G.R. 1982a. The water relations of well-watered, mycorrhizal, and nonmycorrhizal onion plants. J. Amer. Soc. Hort. Sci. 107: 271–274.Google Scholar
  131. 131.
    Nelsen, C.E. and Safer, G.R. 1982b. Increased drought tolerence of mycorrhizal onion plants caused by improved phosphorous nutrition. Planta 154: 407–413CrossRefGoogle Scholar
  132. 132.
    Neuman, D S, Rood, S.B. and Smit, B.A. 1990. Does cytokinin transport from root-to-shoot in the xylem sap regulate leaf responses to root hypoxia? J. Exp. Bot. 41: 1325–1333.Google Scholar
  133. 133.
    Newman, S.E. and Davies, F.T. Jr. 1987. High soil temperature and water relations of endomycorrhizal nursery crops. J. Environ. Hort. 5: 93–96Google Scholar
  134. 134.
    Newman, S E and Davies, F.T. 1988. High root-zone temperatures, mycorrhizal fungi, water relations, and root hydraulic conductivity of container-grown woody plants. J. Amer. Soc. Hort. Sci. 113: 138–146.Google Scholar
  135. 135.
    Oades, J.M. and Waters, A.G. 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29: 815–828.Google Scholar
  136. 136.
    Okon, I.E., Osonubi, O. and Sanginga, N. 1996. Vesicular-arbuscular mycorrhiza effects on Fliricidia sepium and Senna siamea in a fallowed alley cropping system. Agroforestry Systems 33: 165–175.CrossRefGoogle Scholar
  137. 137.
    Osonubi, O. 1991. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings Plant Soil 136: 131–143.Google Scholar
  138. 138.
    Osonubi, O., Bakare, O.N. and Mulongoy, K. 1992. Interactions between drought stress and vesicular-arbuscular mycorrhiza on the growth of Faidherbia albida (Syn. Acacia albida) and Acacia nilotica in sterile and non-sterile soils. Biol. Fert. soils. 14: 159–165.Google Scholar
  139. 139.
    Osundina, M. 1995. Responses of seedlings of Parkia biglobes (African locust bean) to drought and inoculation with vesicular-arbuscular mycorrhiza. Nigerian J. Bot. 8: 1–10.Google Scholar
  140. 140.
    Pleasants, A.L. 1930. The effect of nitrate fertilizer on somatal behavior. J. Elisha Mitchell Sci. Soc. 46: 95–116.Google Scholar
  141. 141.
    Price, N.S., Roncadori, R.W. and Hussey, R.S. 1989. Cotton root growth as influenced by phosphorus nutrition and vesicular-arbuscular mycorrhizas New Phytol. 111: 61–66.Google Scholar
  142. 142.
    Quarrie, S.A. 1983. Genetic differences in abscisic acid physiology and their potential uses in agriculture. In: Abscisic Acid. Addicott, F.T. (ed), Praeger, New York. pp. 13–28.Google Scholar
  143. 143.
    Radin, J.W. 1984. Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol. 76: 392–394.PubMedCrossRefGoogle Scholar
  144. 144.
    Radin, J.W. 1990. Responses of transpiration and hydraulic conductance to root temperature in nitrogen-and phosphorus-deficient cotton seedlings. Plant Physiol. 92: 855–857.PubMedCrossRefGoogle Scholar
  145. 145.
    Radin, J.W. and Parker, L.L. 1979. Water relations of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure. Plant Physiol. 64: 495–498.Google Scholar
  146. 146.
    Radin, J.W. and Eidenbach, M.P. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol. 75: 372–377.PubMedCrossRefGoogle Scholar
  147. 147.
    Read, D.J. and Boyd, R. 1986. Water relations of mycorrhizal fungi and their host plants. In: Water, Fungi and Plants. Ayres, P., Boddy, L. (eds), Cambridge University Press, Cambridge. pp. 287–303.Google Scholar
  148. 148.
    Reid, C.P. 1979. Mycorrhizae and water stress. In:Plant Physiology and Symbiosis, Vol 6. Reidacher, A., Gagnaire-Michard (eds), CNRF, Nance France. pp. 392–408.Google Scholar
  149. 149.
    Ruiz, L.P., Atkinson, C.J. and Mansfield, T.A. 1993. Calcium in the xylem and its influence on the behaviour of stomata. Philos. Trans. R. Soc. Lond. [Biol.] 341: 67–74.Google Scholar
  150. 150.
    Ruiz-Lozano, J.M. and Azcón, R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plantarum 95: 472–478.Google Scholar
  151. 151.
    Ruiz-Lozano, J.M., Azcón, R. and Gómez, M. 1995. Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol. 61: 456–460.Google Scholar
  152. 152.
    Ruiz-Lozano, J.M., Gómez, M. and Azcón, R. 1995. Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Science 110: 37–44.CrossRefGoogle Scholar
  153. 153.
    Ruiz-Lozano, J.M. Azcón, R. and Gómez, M. 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plantarum 98: 767–772Google Scholar
  154. 154.
    Runjin, L. 1989. Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. J. Plant Nut. 12: 997–1017.CrossRefGoogle Scholar
  155. 155.
    Safir, G.R. and Nelsen, C.E. 1981. Water and nutrient uptake by vesicular-arbuscular mycorrhizal plants. In: Role of Mycorrhizal Associations and Crop Production. Myers, R. (ed), New Jersey Agric. Expt. Stn. Research Report No. R0440-01-81. pp 25–31.Google Scholar
  156. 156.
    Saliendra, N.Z., Sperry,J.S. and Comstock, J.P. 1995. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 196: 357–366.CrossRefGoogle Scholar
  157. 157.
    Sanchez-Diaz, M. and Honrubia, M. 1994. Water relations and alleviation of drought stress in mycorrhizal plants. In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Gianinazzi, S., Schiiepp, H. (eds), Birkhäuser, Boston. pp. 167–178.CrossRefGoogle Scholar
  158. 158.
    Sanders, F.E. and Tinker, P.B. 1973. Phosphate flow into mycorrhizal roots. Pestic. Sci. 4: 385.Google Scholar
  159. 159.
    Schellenbaum, L., Muller, J., Boller, T., Wiemken, A. and Schuepp, H. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol. 138: 59–66.CrossRefGoogle Scholar
  160. 160.
    Schurr, U., Gollan, T. and Schulze, E.D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. 2. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ. 15: 561–567.Google Scholar
  161. 161.
    Schwob, I., Ducher, M., Sallanon, H. and Coudret, A. 1998. Growth and gas exchange responses of Hevea brasiliensis seedlings to inoculation with Glomus mosseae. Trees Struc. Func. 12: 236–240.Google Scholar
  162. 162.
    Shrestha, Y.H., Ishii, T. and Kadoya, K. 1995. Effect of vesicular-arbuscular mycorrhizal fungi on the growth, photosynthesis, transpiration and the distribution of photosynthates of bearing satsuma mandarin trees. J. Japan. Soc. Hort. Sci. 64: 517–525.Google Scholar
  163. 163.
    Sieverding, E. 1984. Influence of soil water regimes on VA mycorrhiza, Ill. Comparison of three mycorrhizal fungi and their influence on transpiration. J. Agron. Crop Sci. 153: 52–61.Google Scholar
  164. 164.
    Sieverding, E. 1986. Influence of soil water regimes on VA mycorrhiza, IV. Effect on root growth and water relations of Sorghum bicolor. J. Agron. Crop Sci. 157: 36–42.Google Scholar
  165. 165.
    Smith, S.E. and Read, D.J. 1997. Mycorrhizal symbiosis, 2nd ed, p. 155–159. Academic Press, New York, 605 pp.Google Scholar
  166. 166.
    Snellgrove, R.C., Splittstoesser, W.E., Stribley, D.P. and Tinker, P.B. 1982. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol. 92: 75–87.CrossRefGoogle Scholar
  167. 167.
    Solarova, J. and Pospisilova, J. 1983. Photosynthetic characteristics during ontogenesis of leaves. VIII. Stomatal diffusive conductance and stomatal reactivity. Photosynthetica 17: 101–151.Google Scholar
  168. 168.
    Stahl, P.D. and Smith, W.K. 1984. Effects of different geographic isolates of Glomus on the water relations ofAgropyron smithii. Mycologia. 76: 261–267.CrossRefGoogle Scholar
  169. 169.
    Subramanian, K.S., Charest, C., Dwyer, L.M. and Hamilton, R.I. 1995. Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol. 129: 643–650.CrossRefGoogle Scholar
  170. 170.
    Subramanian, K.S., Charest, C., Dwyer, L.M. and Hamilton, R.I. 1997. Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Can. J. Bot. 75: 1582–1591.Google Scholar
  171. 171.
    Sweatt, M.R. and Davies, F.T. 1984. Mycorrhizae, water relations, growth and nutrient uptake of geranium grown under moderately high phosphorus regimes. J. Amer. Soc. Hort. Sci. 109: 210–213.Google Scholar
  172. 172.
    Sylvia, D.M., Hammond, L.C., Bennett, J.M., Haas, J.H. and Linda, S.B. 1993. Field response of maize to a VAM fungus and water management. Agron. J. 85: 193–8.Google Scholar
  173. 173.
    Syvertsen, J.P. and Graham, J.H. 1990. Influence of vesicular-arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves. Plant Physiol. 94: 1424–1428.PubMedCrossRefGoogle Scholar
  174. 174.
    Tardieu, F., Zhang, J. and Gowing, D.J.G. 1993. Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ. 16: 413–420.CrossRefGoogle Scholar
  175. 175.
    Tardieu, F. and Simonneau, T. 1998. Variability among species of stomatal control under fluctuation soil water status and evaporative demand: modelling isohydric and anisohydric behaviors. J. Exp. Bot. 49: 419–432.Google Scholar
  176. 176.
    Thakur, A.K. and Panwar, J.D.S. 1997. Response of Rhizobium-vesicular arbuscular mycorrhizal symbionts on photosynthesis, nitrogen metabolism and sucrose translocation in greengram (Phaseolus radiatus). Indian J. Agric. Sci. 67: 245–248.Google Scholar
  177. 177.
    Thiagarajan, T.R. and Ahmad, M.H. 1994. Phosphatase activity and cytokinin content in cowpeas (Vigna unguiculata) inoculated with a vesicular-arbuscular mycorrhizal fungus. Biol. Fertil Soils 17: 51–56.Google Scholar
  178. 178.
    Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29: 729–743.Google Scholar
  179. 179.
    Trent, J.D., Svejcar, T.J. and Christiansen, S. 1989. Effects of fumigation on growth, photosynthesis, water relations and mycorrhizal development of winter wheat in the field. Can. J. Plant Sci. 69: 535–540.Google Scholar
  180. 180.
    Tyree, M.T. and Sperry, J.S. 1988. Do woody plants operate near the point of catastrophic xylem disfunction caused by dynamic water stress? Plant Physiol. 88: 574–580.PubMedCrossRefGoogle Scholar
  181. 181.
    von Reichenback, H.G. and Schönbeck, F. 1995. Influence of VA-mycorrhiza on drought tolerance of flax (Linum usitatissimum L.) II. Effect of VA-mycorrhiza on stomatal gas exchange, shoot water potential, phosphorus nutrition and the accumulation of stress metabolites. Angew. Bot. 69: 183–188.Google Scholar
  182. 182.
    Wang, G.M., Coleman, D.C., Freckman, D.W., Dyer, M.I., McNaughton, S.J., Acra, M.A. and Goeschl, J.D. 1989. Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: real time dynamic measurements using 11 CO2. New Phytol. 112: 489–493.CrossRefGoogle Scholar
  183. 183.
    Weyers, J.D.B. and Meidner, H. 1990. Methods in Stomatal Research. Longman Scientific and Technical, Essex, UK. pp. 9–12.Google Scholar
  184. 184.
    Wilkinson, S. and Davies, W.J. 1997. Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113: 559–573.PubMedGoogle Scholar
  185. 185.
    Wong, S.C., Cowan, LR. and Farquhar, G.D. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature (London) 282: 424–426.CrossRefGoogle Scholar
  186. 186.
    Wright,D.P., Scholes, J.D. and Read, D.J. 1998a. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21: 209–216.CrossRefGoogle Scholar
  187. 187.
    Wright, D.P., Read, D.J. and Scholes, J.D. 1998b. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21: 881–891.CrossRefGoogle Scholar
  188. 188.
    Zeiger, E., Farquhar, G.D. and Cowan, I.R. (eds ). 1987. Stomatal function. Stanford University Press.Google Scholar
  189. 189.
    Zhang, J. and Davies, W.J. 1987. Increased synthesis of ABA in drying root tips and root-shoot communication via the transpiration stream. J. Exp. Bot. 38: 2015–23.Google Scholar
  190. 190.
    Zhang, J., Schurr, U. and Davies, W.J. 1987. Control of stomatal behavior by abscisic acid which apparently originates in the roots. J. Exp. Bot. 38: 1174–1181.Google Scholar
  191. 191.
    Zhang, J. and Davies, W.J. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 12: 73–81.CrossRefGoogle Scholar
  192. 192.
    Zhang, J. and Davies, W.J. 1990a. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ. 13: 277–285.CrossRefGoogle Scholar
  193. 193.
    Zhang, J. and Davies, W.J. 1990b. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? J. Exp. Bot. 41: 1125–1132.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations