Competition for light in windbreak-millet systems in the Sahel

  • M. Mayus
  • H. van Keulen
  • L. Stroosnijder
Part of the Systems Approaches for Sustainable Agricultural Development book series (SAAD, volume 6)


Windbreaks, although beneficial for wind erosion control, compete with crops for light, nutrients and soil water, which may affect crop yields at the tree-crop interface. A modelling approach was chosen to optimize the design of a windbreak-millet system at the ICRISAT Sahelian Centre, Niger. Soil water content, soil nutrients, radiation and millet growth were studied. An existing plant growth model was tested for millet (Pennisetum glaucum L.) during the 1993 growing season. Thereafter, the tested model was extended to evaluate the influence of shading on the production of the adjacent millet crop. The required minimum plant and soil data sets were either field determined or obtained from literature. A comparison of simulated and field data for the growing season of 1993 suggests that 50% of the reduction in dry matter production adjacent to the shelter Bauhinia rufescens is due to shading and 50% is due to below-ground competition.

Key words

millet windbreaks competition model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bley J (1990) Experimentelle und modellanalytische Untersuchungen zum Wasser-und Nährstoffhaushalt von Perlhirse (Pennisetum americanum L.) im Südwest-Niger. PhD dissertation, Universität Hohenheim, Stuttgart, Germany. 132 p.Google Scholar
  2. Brenner A J (1991) Tree-crop interactions within a Sahelian windbreak system. PhD dissertation, University of Edinburgh, Edinburgh, UK. 234 p.Google Scholar
  3. Brenner A J, Van Den Beldt R J, Jarvis P G (1993) Tree-crop interface competition in a semi-arid Sahelian windbreak. Pages 15–23 in Proceedings of the 4th International Symposium on Windbreaks and Agroforestry, 26–30 July 1993, Hedeselskabet, Denmark.Google Scholar
  4. Conijn J G (1995) RECAFS: A model for resource competition and cycling in agroforestry systems. Model description and user manual. Rapports Production Soudano-Sahélienne (PSS) No. 12. AB-DLO, P.O. Box 14, 6700 AA Wageningen, The Netherlands. 101 p.Google Scholar
  5. De Wit C T (1982) Coordination of models. Pages 26–32 in Penning de Vries F W T, Van Laar H H (Eds.) Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, The Netherlands.Google Scholar
  6. Hagen L J (1991) A wind erosion prediction system to meet user needs. J. of Soil and Water Conservation 46: 106–111.Google Scholar
  7. Hone T, De Wit C T, Goudriaan J, Bensink J (1979) A formal template for the development of cucumber in its vegetative stage. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (Amsterdam, The Netherlands) Series C, 82 (4): 433–479.Google Scholar
  8. Kropff M J, Van Laar H H (Eds.) (1993) Modelling crop-weed interactions. CAB International, Wallingford, UK, and the International Rice Research Institute, Philippines. 274 p.Google Scholar
  9. Long S P (1989) Influence of neem windbreaks on yield, microclimate, and water use of millet and sorghum in Niger, West Africa. Masters thesis, Texas A & M University, Tex., USA. 160 p.Google Scholar
  10. Onyewotu L O Z, Ogigirigi M A, Stigter C J (1994) A study of competitive effects between a Eucalyptus camaldulensis shelterbelt and an adjacent millet (Pennisetum typhoides) crop. Agric. Ecosystems and Environment 51:281 — 286.Google Scholar
  11. Penman H L (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, Series A 193: 120–146.CrossRefGoogle Scholar
  12. Rosenberg N J (1974) Windbreaks and shelter effect. Pages 238–264 in Rosenberg N J (Ed.) Micro-climate: The biological environment. John Wiley and Sons, New York, USA.Google Scholar
  13. Stroosnijder L (1982) Simulation of the soil water balance. Pages 175–193 in Penning de Vries F W T, Van Laar H H (Eds.) Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, The Netherlands.Google Scholar
  14. Van Kraalingen D W G, Van Keulen H (1988) Model development and application for the `Project pilote en agrométéorologie’. Report prepared for submission to World Meteorological Organization. Agricultural University Wageningen and DLD-Research Institute for Agrobiological and Soil Fertility (AB-DLO), Wageningen, The Netherlands.Google Scholar
  15. Verbeme E, Dijksterhuis G, Jongschaap R, Bazi H, Sanou A, Bonzi M (1995) Simulation des cultures pluviales au Burkina Faso (CP-BKF3): Sorgho, mil et mais. DLD-Research Institute for Agrobiological and Soil Fertility (AB-DLO), Wageningen, The Netherlands, Bureau National des Sols INERA and Institut d’Etudes et de Recherches Agricoles, Nota 18, Burkina Faso. 53 p.Google Scholar
  16. Williams J R (1990) The erosion-productivity impact calculator (EPIC) model: A case history. Phil. Trans. R. Soc. Lond. B 329: 421–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. Mayus
    • 1
  • H. van Keulen
    • 2
  • L. Stroosnijder
    • 1
  1. 1.Department of Irrigation and Soil and Water ConservationWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.DLO-Research Institute for Agrobiological and Soil Fertility Research, and Department of Animal Husbandry, Section Animal Production SystemsWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations