Skip to main content

Distributions and regular holonomic systems

  • Chapter
  • 761 Accesses

Part of the book series: Mathematics and Its Applications ((MAIA,volume 247))

Summary

The first section treats analytic D-module theory on real analytic manifolds and some basic results concerned with extendible distributions is presented in section 2 as a preparation to section 3. There we prove that every regular holonomic D X -module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(D X ) into the category of regular holonomic modules on the conjugate complex manifold defined by

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS % baaSqaaiaadIfaaeqaaOGaaiikaiaad2eacaGGPaGaeyypa0Jaamis % aiaad+gacaWGTbWaaSbaaSqaaiaadseadaWgaaadbaGaamiwaaqaba % aaleqaaOGaaiikaiaad2eacaGGSaGaamiraiaadkgadaWgaaWcbaGa % amiwamaaBaaameaacaWGsbaabeaaaSqabaGccaGGPaGaaiOlaaaa!4811!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\kappa _X}(M) = Ho{m_{{D_X}}}(M,D{b_{{X_R}}}).$$

We refer to К X as Kashiwara’s conjugation functor. Reversing the roles between X and EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara % aaaa!36EA!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\bar X$$ there exists the conjugation functor EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa % aaleaaceWGybGbaebaaeqaaaaa!37E6!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${K_{\bar X}}$$ from EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabI % eacaqGOaGaamiramaaBaaaleaaceWGybGbaebaaeqaaOGaaiykaiab % gkziUkaabkfacaqGibGaaeikaiaadseadaWgaaWcbaGaamiwaaqaba % GccaGGPaaaaa!41A1!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\text{RH(}}{D_{\bar X}}) \to {\text{RH(}}{D_X})$$. We prove that the compsed functor EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa % aaleaaceWGybGbaebaaeqaaOGaeSigI8Maam4samaaBaaaleaacaWG % ybaabeaaaaa!3B03!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${K_{\bar X}} \circ {K_X}$$ is the identity on RH(D X ).

Distributions whose cyclic D X -modules are regular holonomic will be called regular holonomic distributions. Various examples of regular holonomic distributions are given in subsequent sections. In particular we mention the principal value distribu?tions defined by

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaaWaaeaacq % aH8oqBcaGGSaGaeuiQdKfacaGLPmIaayPkJaGaeyypa0ZaaCbeaeaa % caWGmbGaamyAaiaad2gaaSqaaiabew7aLjabgkziUkaaicdaaeqaaO % Waa8quaeaacaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeuiQ % dKfaleaacaGG8bGaamOzaiaacYhaaeqaniabgUIiYdaaaa!4D8F!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\left\langle {\mu ,\Psi } \right\rangle = \mathop {Lim}\limits_{\varepsilon \to 0} \int\limits_{|f|} {{f^{ - 1}}\Psi } $$

where Ψ is any test-form on X R and fO(X). Meromorphic continuations of distributions are also discussed.

In the final sections we use the conjugation functor to exhibit an inverse functor to the de Rham functor in the Riemann-Hilbert correspondence. The inverse functor is obtained from a temperate Hom-functor composed with the 6-complex. This leads to properties of regular holonomic modules which go beyond those in Chapter V. The main results occur at the end of section 9. The last section contains a discussion about D-module theory related to Hodge theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Herrera, M. and Liebermann, D., Residues and principal values on a complex space, Invent. Math. 194 (1971).

    Google Scholar 

  2. Barlet, D., Fonctions de type trace, Ann. l’Inst. Fourier 33 (1983), 43–76.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. RIMS Kyoto 20 (1984), 319–365.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kashiwara, M., Distributions and regular holonomic D-modules on complex manifolds, Adv. Stud. Pure Math. 8 (1986), 199–206.

    MathSciNet  Google Scholar 

  5. Barlet, D. and Kashiwara, M., Le réseau L2 d’un système holonôme regulier, Invent. Math. 86 (1986), 33–62.

    MathSciNet  Google Scholar 

  6. Kashiwara, M. and Kawai T., Second microlocalization and asymptotic expansions, Lecture Notes in Physics 126, Springer, 1979, pp. 21–77.

    Google Scholar 

  7. Barlet, D. and Maire, H. M., Asymptotic expansion of complex integrals via Mellin transforms, J. of Functional Anal. 83 No. 2 (1989), 233–257.

    Article  MathSciNet  MATH  Google Scholar 

  8. Atiyah, M. F., Resolutions of singularities and divisions of distributions, Comm. Pure and Appl. Math. 23 (1970), 145–150.

    MathSciNet  MATH  Google Scholar 

  9. Kashiwara M., Kawai, T. and Kimura, T., Foundations of algebraic analysis, Princeton Univ. Press, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björk, JE. (1993). Distributions and regular holonomic systems. In: Analytic D-Modules and Applications. Mathematics and Its Applications, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0717-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0717-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4238-5

  • Online ISBN: 978-94-017-0717-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics