Advertisement

Résultats de “Pureté” pour les Variétés Lisses sur un Corps Fini

Appendice à l’article de J.-L. Colliot-Théleǹe
Chapter
Part of the NATO ASI Series book series (ASIC, volume 407)

Abstract

In this note, we extend the main results of [CT] to more general coefficients than μ n ⨂d . For a constant-twisted sheaf A, with geometric fibre ℤ/ n , coming from the ground field (e.g. A = μ n ⨂i . ), we still prove that, with the notation of [CT], H i (X Zar , H X d+1 (A)) for i = d − 1 and d − 2. (If = 2, a technical hypothesis on A is necessary; it holds for A = μ n ⨂i .) For an ind-constant-twisted sheaf B, with geometric fibre ℚ /ℤ , not isomorphic to ℚ /ℤ (d), we prove (under a small technical hypothesis when = 2) that the sheaf H X d+1 (B) is itself 0, as well as all the terms of its Gersten resolution. The latter result in fact holds for a smooth variety defined over an arbitrary (not necessarily finite) finitely generated field; its proof is much easier than the one for the former result and does not rely on the results of [CT], while the proof of the first result does.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [BI]
    S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Series IV, Durham, 1980.Google Scholar
  2. [BO]
    S. Bloch, A. Ogus, Gersten’s conjecture and the homology of schemes, A.n. Sci. Ec. Norm. Sup. 7 (1974), 181–201.MathSciNetzbMATHGoogle Scholar
  3. [CT]
    J.-L. Colliot-Thélène, On the reciprocity sequence in higher class field theory of function fields, these proceedings.Google Scholar
  4. [CHK]
    J.-L. Colliot-Thélène, R. Hoobler, B. Kahn, en préparation.Google Scholar
  5. [G]
    D. Grayson, Universal exactness in algebraic K-theory, J. Pure Appl. Algebra 36 (1985), 139–141.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [K]
    B. Kahn Deux théorèmes de comparaison en cohomologie étale; applications à paraître dans Duke Math. J. Google Scholar
  7. [Ka]
    K. Kato, A generalization of class field theory by using K-groups, II, J. Fac. Sci., Univ. Tokyo 27 (1980), 603–683.zbMATHGoogle Scholar
  8. [CG]
    J-P. Serre, Cohomologie galoisienne, Lect. Notes in Math. 5, Springer, Berlin, 1965. [Su] A. Suslin, Torsion in K2 of fields, K-theory 1 (1987), 5–29.Google Scholar
  9. [T]
    J. Tate, lettre à Iwasawa, Lect. Notes in Math. 342, Springer, New York (1972), 524–529.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.CNRS — URA 212 MathématiquesUniversité de Paris 7Paris Cedex 05France

Personalised recommendations