Skip to main content

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 3))

Abstract

The skin, as the largest organ of the body, has numerous protective roles to play throughout the span of our lives. In due course it is subject to the effects of both intrinsic (innate) and extrinsic (photo) aging. Therefore, the purpose of this chapter is to consider how the skin ages, examining the effects of aging on the organ and how this relates to changes in its function. Finally, consideration will be made of some of the many potential treatments and therapies which are currently available and which future approaches may be beneficial to ameliorate or even reverse the effects of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urmacher C (1990). Histology of normal skin. Am J Surg Pathol. 14: 671–686.

    Article  PubMed  CAS  Google Scholar 

  2. Quevedo WC, Fitzpatrick TB, Szabo G, Jimbow K(1987). In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, eds. Dermatology in General Medicine. New York: McGraw-Hill, pp. 224–51.

    Google Scholar 

  3. Nordlund JJ, Sober AJ, Hansen TW (1985). Periodic synopsis on pigmentation. J Am Acad Dermatol. 12: 359–63.

    Article  PubMed  CAS  Google Scholar 

  4. Stenn KS, Goldenhersh MA, Trepera RW (1992). In: Weedon D, ed. The Skin. London: Churchill Livingston, pp. 1–19.

    Google Scholar 

  5. Holbrook KA, Wolff K (1987). In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, eds. Dermatology in General Medicine. New York: McGraw-Hill, pp. 93–153.

    Google Scholar 

  6. Yaar M, Gilchrest BA (2001). Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 26: 583–91.

    Article  PubMed  CAS  Google Scholar 

  7. Uitto J, Bernstein EF (1998). Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis. J Investig Dermatol Symp Proc. 3: 41–4.

    PubMed  CAS  Google Scholar 

  8. Gilchrest BA (1995). Photodamage. Cambridge, MA: Blackwell Science.

    Google Scholar 

  9. Gilchrest BA (1989). Skin aging and photoaging: an overview. J Am Acad Dermatol. 21: 610–3.

    Article  PubMed  CAS  Google Scholar 

  10. Ma W, Wlaschek M, Tantcheva-Poor I, et al. (2001). Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin Exp Dermatol. 26: 592–99.

    Article  PubMed  CAS  Google Scholar 

  11. Kligman AM, Kligman LH (1999). Photoaging. In: Freedberg IM, Eisen AZ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, pp. 1717–23.

    Google Scholar 

  12. Schwartz RA, Stoll HLJ (1999). Squamous cell carcinoma. In: Freedberg IM, Eisen AZ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, pp. 840–56.

    Google Scholar 

  13. Yaar M, Gilchrest BA (1999). Aging of the skin. In: Freedberg IM, Eisen AZ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, pp. 1697–706.

    Google Scholar 

  14. Yaar M (1995). Molecular mechanisms of skin aging. Adv Dermatol. 10: 63–75.

    PubMed  CAS  Google Scholar 

  15. Leyden JJ (1990). Clinical features of ageing skin. Br J Dermatol. 122 (Suppl 35): 1–3.

    Article  PubMed  Google Scholar 

  16. Gilchrest BA, Blog FB, Szabo G (1979). Effects of aging and chronic sun exposure on melanocytes in human skin. Trends Biotechnol. 73: 141–3.

    CAS  Google Scholar 

  17. Keogh EV, Walsh RJ (1965). Rate of greying of human hair. Nature 207: 877–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tobin DJ, Paus R (2001). Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 36: 29–54.

    Article  PubMed  CAS  Google Scholar 

  19. Rhodes AR, Albert LS, Barnhill RL, Weinstock MA (1991). Sun-induced freckles in children and young adults. A correlation of clinical and histopathologic features. Cancer 67: 1990–2001.

    Article  PubMed  CAS  Google Scholar 

  20. Bhawan J, Andersen W, Lee J, Labadie R, Solares G (1995). Photoaging versus intrinsic aging: a morphologic assessment of facial skin. J Cutan Pathol. 22: 154–9.

    Article  PubMed  CAS  Google Scholar 

  21. Gilchrest BA, Szabo G, Flynn E, Goldwyn RM (1983). Chronologic and actinically induced aging in human facial skin. Trends Biotechnol. 80 (Suppl): 81s - 5s.

    CAS  Google Scholar 

  22. Thiers BH, Maize JC, Spicer SS, Cantor AB (1984). The effect of aging and chronic sun exposure on human Langerhans cell populations. Trends Biotechnol. 82: 223–6.

    CAS  Google Scholar 

  23. Toyoda M, Bhawan J (1997). Ultrastructural evidence for the participation of Langerhans cells in cutaneous photoaging processes: a quantitative comparative study. J Dermatol Sci. 14: 87–100.

    Article  PubMed  CAS  Google Scholar 

  24. Sauder DN (1986). Effect of age on epidermal immune function. Dermatol Clin. 4: 447–54.

    PubMed  CAS  Google Scholar 

  25. Grewe M (2001). Chronological ageing and photoageing of dendritic cells. Clin Exp Dermatol. 26: 608–12.

    Article  PubMed  CAS  Google Scholar 

  26. Kurban RS, Bhawan J (1990). Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 16: 908–14.

    PubMed  CAS  Google Scholar 

  27. Lavker RM, Zheng PS, Dong G (1987). Aged skin: a study by light, transmission electron, and scanning electron microscopy. Trends Biotechnol. 88: 44s - 51s.

    CAS  Google Scholar 

  28. Olsen DR, Uitto J (1989). Differential expression of type IV procollagen and laminin genes by fetal vs adult skin fibroblasts in culture: determination of subunit mRNA steady-state levels. Trends Biotechnol. 93: 127–31.

    CAS  Google Scholar 

  29. de Rigal J, Escoffier C, Querleux B, Faivre B, Agache P, Leveque JL (1989). Assessment of aging of the human skin by in vivo ultrasonic imaging. Trends Biotechnol. 93: 621–5.

    CAS  Google Scholar 

  30. Dimri GP, Lee X, Basile G, et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–7.

    Article  PubMed  CAS  Google Scholar 

  31. Campisi J (1996). Replicative senescence: an old lives’ tale? Cell 84: 497–500.

    Article  PubMed  CAS  Google Scholar 

  32. Faragher RG, Kipling D (1998). How might replicative senescence contribute to human ageing? Bioessays 20: 985–91.

    Article  PubMed  CAS  Google Scholar 

  33. Uitto J (1986). Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Dermatol Clin. 4: 433–46.

    PubMed  CAS  Google Scholar 

  34. Kligman AM, Lavker RM (1988). Cutaneous ageing: the differences between intrisic aging and photoageing. J Cutan Aging Cosmetol Dermatol. 1: 5–12.

    Google Scholar 

  35. Braverman IM, Fonferko E (1982). Studies in cutaneous aging: II. The microvasculature. Trends Biotechnol. 78: 444–8.

    CAS  Google Scholar 

  36. Chang E, Yang J, Nagavarapu U, Herron GS (2002). Aging and survival of cutaneous microvasculature. Trends Biotechnol. 118: 752–8.

    CAS  Google Scholar 

  37. Millis AJ, McCue HM, Kumar S, Baglioni C (1992). Metalloproteinase and TIMP-1 gene expression during replicative senescence. Exp Gerontol. 27: 425–8.

    Article  PubMed  CAS  Google Scholar 

  38. West MD, Shay JW, Wright WE, Linskens MH (1996). Altered expression of plasminogen activator and plasminogen activator inhibitor during cellular senescence. Exp Gerontol. 31: 175–93.

    Article  PubMed  CAS  Google Scholar 

  39. Ashcroft GS, Horan MA, Herrick SE, Tarnuzzer RW, Schultz GS, Ferguson MW (1997). Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell Tissue Res. 290: 581–91.

    Article  PubMed  CAS  Google Scholar 

  40. Vasile E, TomitaY, Brown LF, Kocher O, Dvorak HF (2001). Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 15: 458–66.

    CAS  Google Scholar 

  41. Tokunaga O, Yamada T, Fan JL, Watanabe T (1991). Age-related decline in prostacyclin synthesis by human aortic endothelial cells. Qualitative and quantitative analysis. Am J Pathol. 138: 941–9.

    PubMed  CAS  Google Scholar 

  42. Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S (1993). Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun. 195: 1070–6.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper LT, Cooke JP, Dzau VJ (1994). The vasculopathy of aging. J Gerontol. 49: B191–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kligman LH, Murphy GF (1996). Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor. Photochem Photobiol. 63: 123–7.

    Article  PubMed  CAS  Google Scholar 

  45. Lavker RM, Kligman AM (1988). Chronic heliodermatitis: a morphologic evaluation of chronic actinic dermal damage with emphasis on the role of mast cells. Trends Biotechnol. 90: 325–30.

    CAS  Google Scholar 

  46. Nagelkerken L, Hertogh-Huijbregts A, Dobber R, Drager A (1991). Age-related changes in lymphokine production related to a decreased number of CD45RBhi CD4+ T cells. Eur J lmmunol. 21: 273–81.

    Article  CAS  Google Scholar 

  47. Fenske NA, Lober CW (1986). Structural and functional changes of normal aging skin. J Am Acad Dermatol. 15: 571–85.

    Article  PubMed  CAS  Google Scholar 

  48. Zouboulis CC, Boschnakow A (2001). Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol. 26: 600–7.

    Article  PubMed  CAS  Google Scholar 

  49. Pochi PE, Strauss JS, Downing DT (1979). Age-related changes in sebaceous gland activity. Trends Biotechnol. 73: 108–11.

    CAS  Google Scholar 

  50. Plewig G, Kligman AM (1978). Proliferative activity of the sebaceous glands of the aged. Trends Biotechnol. 70: 314–17.

    CAS  Google Scholar 

  51. Pierard GE, Pierard-Franchimont C, Marks R, Paye M, Rogiers V (2000). EEMCO guidance for the in vivo assessment of skin greasiness. The EEMCO Group. Skin Pharmacol Appl Skin Physiol. 13: 372–89.

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto A, Serizawa S, Ito M, Sato Y (1987). Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. Trends Biotechnol. 89: 507–12.

    CAS  Google Scholar 

  53. Deplewski D, Rosenfield RL (1999). Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology 140: 4089–94.

    Article  PubMed  CAS  Google Scholar 

  54. Lesnik RH, Kligman LH, Kligman AM (1992). Agents that cause enlargement of sebaceous glands in hairless mice. II. Ultraviolet radiation. Arch Dermatol Res. 284: 106–8.

    Article  PubMed  CAS  Google Scholar 

  55. Leyden J (2001). What is photoaged skin? Eur J Dermatol. 11: 165–7.

    PubMed  CAS  Google Scholar 

  56. He W, Li AG, Wang D, et al. (2002). Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J. 21: 2580–90.

    Article  PubMed  CAS  Google Scholar 

  57. Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE, Philbrick WM (1998). PTHrP regulates epidermal differentiation in adult mice. Trends Biotechnol. 111: 1122–8.

    CAS  Google Scholar 

  58. Entius MM, Keller JJ, Drillenburg P, Kuypers KC, Giardiello FM, Offerhaus GJ (2000). Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir-Torre syndrome. Clin Cancer Res. 6: 1784–9.

    PubMed  CAS  Google Scholar 

  59. Chung JH, Seo JY, Choi HR, et al. (2001). Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. Trends Biotechnol. 117: 1218–24.

    CAS  Google Scholar 

  60. Trautinger F, Mazzucco K, Knobler RM, Trenz A, Kokoschka EM (1994). UVA- and UVB-induced changes in hairless mouse skin collagen. Arch Dermatol Res. 286: 490–4.

    Article  PubMed  CAS  Google Scholar 

  61. Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M (1987). Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol. 117: 419–28.

    Article  PubMed  CAS  Google Scholar 

  62. Mitchell RE (1967). Chronic solar dermatosis: a light and electron microscopic study of the dermis. Trends Biotechnol. 48: 203–20.

    CAS  Google Scholar 

  63. Werth VP, Shi X, Kalathil E, Jaworsky C (1996). Elastic fiber-associated proteins of skin in development and photoaging. Photochem Photobiol. 63: 308–13.

    Article  PubMed  CAS  Google Scholar 

  64. Watson RE, Griffiths CE, Craven NM, Shuttleworth CA, Kielty CM (1999). Fibrillinrich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. Trends Biotechnol. 112: 782–7.

    CAS  Google Scholar 

  65. Bernstein EF, Chen YQ, Tamai K, et al. (1994). Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. Trends Biotechnol. 103: 182–6.

    CAS  Google Scholar 

  66. Bernstein EF, Brown DB, Urbach F, et al. (1995). Ultraviolet radiation activates the human elastin promoter in transgenic mice: a novel in vivo and in vitro model of cutaneous photoaging. Trends Biotechnol. 105: 269–73.

    CAS  Google Scholar 

  67. Breen M, Johnson RL, Sittig RA, Weinstein HG, Veis A (1972). The acidic glycosaminoglycans in human fetal development and adult life: Cornea, sclera and skin. Connect Tissue Res. 1: 291–303.

    Article  CAS  Google Scholar 

  68. Longas MO, Russell CS, He XY (1987). Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydr Res. 159: 127–36.

    Article  PubMed  CAS  Google Scholar 

  69. Carrino DA, Sorrell JM, Caplan AI (2000). Age-related changes in the proteoglycans of human skin. Arch Biochem Biophys. 373: 91–101.

    Article  PubMed  CAS  Google Scholar 

  70. Willen MD, Sorrell JM, Lekan CC, Davis BR, Caplan AI (1991). Patterns of glycosaminoglycan/proteoglycan immunostaining in human skin during aging. Trends Biotechnol. 96: 968–74.

    CAS  Google Scholar 

  71. Bernstein EF, Fisher LW, Li K, LeBaron RG, Tan EM, Uitto J (1995). Differential expression of the versican and decorin genes in photoaged and sun-protected skin. Comparison by immunohistochemical and northern analyses. Lab Invest. 72: 662–9.

    PubMed  CAS  Google Scholar 

  72. Bentley JP (1979). Aging of collagen. Trends Biotechnol. 73: 80–3.

    CAS  Google Scholar 

  73. Bailey AJ (2001). Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 122: 735–55.

    Article  PubMed  CAS  Google Scholar 

  74. Bailey AJ, Paul RG, Knott L (1998). Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 106: 1–56.

    Article  PubMed  CAS  Google Scholar 

  75. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M (1994). Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 91: 11704–8.

    Article  PubMed  CAS  Google Scholar 

  76. Paul RG, Bailey AJ (1999). The effect of advanced glycation end-product formation upon cell-matrix interactions. Int J Biochem Cell Biol. 31: 653–60.

    Article  PubMed  CAS  Google Scholar 

  77. Barrick B, Campbell EJ, Owen CA (1999). Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes. Wound Repair Regen. 7: 410–22.

    Article  PubMed  CAS  Google Scholar 

  78. Parks WC (1999). Matrix metalloproteinases in repair. Wound Repair Regen. 7: 423–32.

    Article  PubMed  CAS  Google Scholar 

  79. West MD, Pereira-Smith OM, Smith JR (1989). Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res. 184: 138–47.

    Article  PubMed  CAS  Google Scholar 

  80. Zeng G, Millis AJ (1996). Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp Cell Res. 222: 150–6.

    Article  PubMed  CAS  Google Scholar 

  81. Zeng G, Millis AJ (1994). Expression of 72-kDa gelatinase and TIMP-2 in early and late passage human fibroblasts. Exp Cell Res. 213: 148–55.

    Article  PubMed  CAS  Google Scholar 

  82. Ashcroft GS, Herrick SE, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW (1997). Human ageing impairs injury-induced in vivo expression of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -2 proteins and mRNA. J Pathol. 183: 169–76.

    Article  PubMed  CAS  Google Scholar 

  83. Brenneisen P, Oh J, Wlaschek M, et al. (1996). Ultraviolet B wavelength dependence for the regulation of two major matrix-metalloproteinases and their inhibitor TIMP-1 in human dermal fibroblasts. Photochem Photobiol. 64: 649–57.

    Article  PubMed  CAS  Google Scholar 

  84. Brenneisen P, Wenk J, Klotz LO, et al. (1998). Central role of Ferrous/Ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts. J Biol Chem. 273: 5279–87.

    Article  PubMed  CAS  Google Scholar 

  85. Koivukangas V, Kallioinen M, Autio-Harmainen H, Oikarinen A (1994). UV irradiation induces the expression of gelatinases in human skin in vivo. Acta Derm Venereol. 74: 279–82.

    PubMed  CAS  Google Scholar 

  86. Petersen MJ, Hansen C, Craig S (1992). Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts. Trends Biotechnol. 99: 440–4.

    CAS  Google Scholar 

  87. Scharffetter K, Wlaschek M, Hogg A, Bolsen K, Schothorst A, Goerz G, Krieg T, Plewig G (1991). UVA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo. Arch Dermatol Res. 283: 506–11.

    Article  PubMed  CAS  Google Scholar 

  88. Miles CA, Sionkowska A, Hulin SL, Sims TJ, Avery NC, Bailey AJ (2000). Identification ofan intermediate state in the helix-coil degradation of collagen by ultraviolet light. J Biol Chem. 275: 33014–20.

    Article  PubMed  CAS  Google Scholar 

  89. Jurkiewicz BA, Buettner GR (1996). EPR detection of free radicals in UV-irradiated skin: mouse versus human. Photochem Photobiol. 64: 918–22.

    Article  PubMed  CAS  Google Scholar 

  90. Masaki H, Atsumi T, Sakurai H (1995). Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem Biophys Res Commun. 206: 474–9.

    Article  PubMed  CAS  Google Scholar 

  91. Waddington RJ, Moseley R, Embery G (2000). Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis. 6: 138–51.

    Article  PubMed  CAS  Google Scholar 

  92. Shindo Y, Witt E, Han D, Epstein W, Packer L (1994). Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. Trends Biotechnol. 102: 122–4.

    CAS  Google Scholar 

  93. Kwong LK, Sohal RS (2000). Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys. 373: 16–22.

    Article  PubMed  CAS  Google Scholar 

  94. Podda M, Grundmann-Kollmann M (2001). Low molecular weight antioxidants and their role in skin ageing. Clin Exp Dermatol. 26: 578–82.

    Article  PubMed  CAS  Google Scholar 

  95. Beckman KB, Ames BN (1998). The free radical theory of aging matures. Physiol Rev. 78: 547–81.

    PubMed  CAS  Google Scholar 

  96. Lippman RD (1985). Rapid in vivo quantification and comparison of hydroperoxides and oxidized collagen in aging mice, rabbits and man. Exp Gerontol. 20: 1–5.

    Article  PubMed  CAS  Google Scholar 

  97. Niwa Y, Kasama T, Kawai S, et al. (1988). The effect of aging on cutaneous lipid peroxide levels and superoxide dismutase activity in guinea pigs and patients with burns. Life Sci. 42: 351–6.

    Article  PubMed  CAS  Google Scholar 

  98. Podda M, Traber MG, Weber C, Yan LJ, Packer L (1998). UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med. 24: 55–65.

    Article  PubMed  CAS  Google Scholar 

  99. Kawaguchi Y, Tanaka H, Okada T, et al. (1997). Effect of reactive oxygen species on the elastin mRNA expression in cultured human dermal fibroblasts. Free Radic Biol Med. 23: 162–5.

    Article  PubMed  CAS  Google Scholar 

  100. O’Toole EA, Goel M, Woodley DT (1996). Hydrogen peroxide inhibits human keratinocyte migration. Dermatol Surg. 22: 525–9.

    Article  PubMed  Google Scholar 

  101. Agren UM, Tammi RH, Tammi MI (1997). Reactive oxygen species contribute to epidermal hyaluronan catabolism in human skin organ culture. Free Radic Biol Med. 23: 996–1001.

    Article  PubMed  CAS  Google Scholar 

  102. Scharffetter-Kochanek K, Wlaschek M, Briviba K, Sies H (1993). Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett. 331: 304–6.

    Article  PubMed  CAS  Google Scholar 

  103. Herrmann G, Wlaschek M, Bolsen K, Prenzel K, Goerz G, Scharffetter-Kochanek K (1996). Photosensitization of uroporphyrin augments the ultraviolet A-induced synthesis of matrix metalloproteinases in human dermal fibroblasts. Trends Biotechnol. 107: 398–403.

    CAS  Google Scholar 

  104. Wlaschek M, Briviba K, Stricklin GP, Sies H, Scharffetter-Kochanek K (1995). Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. Trends Biotechnol. 104: 194–8.

    CAS  Google Scholar 

  105. Wenk J, Brenneisen P, Wlaschek M, et al. (1999). Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem. 274: 25869–76.

    Article  PubMed  CAS  Google Scholar 

  106. Fisher GJ, Talwar HS, Lin J, et al. (1998). Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogenactivated protein kinase pathways in human skin in vivo. J Clin Invest. 101: 1432–40.

    Article  PubMed  CAS  Google Scholar 

  107. Doubal S, Klemera P (1998). Changes in mechanical properties of skin as a marker of biological age. Sb Lek 99: 423–8.

    PubMed  CAS  Google Scholar 

  108. Pierard GE, Henry F, Castelli D, Ries G (1998). Ageing and rheological properties of facial skin in women. Gerontology 44: 159–61.

    Article  PubMed  CAS  Google Scholar 

  109. Engfeldt P, Arner P (1988). Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm Metab Res Suppl. 19: 26–9.

    PubMed  CAS  Google Scholar 

  110. Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002). Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol. 37: 757–67.

    Article  PubMed  CAS  Google Scholar 

  111. Cerimele D, Celleno L, Serri F (1990). Physiological changes in ageing skin. Br J Dermatol. 122 (Suppl 35): 13–20.

    Article  PubMed  Google Scholar 

  112. Courtois M, Loussouarn G, Hourseau C, Grollier JF (1995). Ageing and hair cycles. Br J Dermatol. 132: 86–93.

    Article  PubMed  CAS  Google Scholar 

  113. Birch MP, Messenger JF, Messenger AG (2001). Hair density, hair diameter and the prevalence of female pattern hair loss. Br J Dermatol. 144: 297–304.

    Article  PubMed  CAS  Google Scholar 

  114. Orentreich N, Markofsky J, Vogelman JH (1979). The effect of aging on the rate of linear nail growth. Trends Biotechnol. 73: 126–30.

    CAS  Google Scholar 

  115. Ashcroft GS, Horan MA, Ferguson MW (1995). The effects of ageing on cutaneous wound healing in mammals. J Anat. 187 (Pt 1): 1–26.

    PubMed  Google Scholar 

  116. Martin P (1997). Wound healing–aiming for perfect skin regeneration. Science 276: 75–81.

    Article  PubMed  CAS  Google Scholar 

  117. Herrick SE, Sloan P, McGurk M, Freak L, McCollum CN, Ferguson MW (1992). Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol. 141: 1085–95.

    PubMed  CAS  Google Scholar 

  118. Browse NL, Burnand KG (1982). The cause of venous ulceration. Lancet 2: 243–5.

    Article  PubMed  CAS  Google Scholar 

  119. Falanga V, Eaglstein WH (1993). The “trap” hypothesis of venous ulceration. Lancet 341: 1006–8.

    Article  PubMed  CAS  Google Scholar 

  120. Scott HJ, Coleridge SP, Scurr JH (1991). Histological study of white blood cells and their association with lipodermatosclerosis and venous ulceration. Br J Surg. 78: 210–11.

    Article  PubMed  CAS  Google Scholar 

  121. Cheatle T (1991). Venous ulceration and free radicals. Br J Dermatol. 124: 508.

    Article  PubMed  CAS  Google Scholar 

  122. Ashcroft GS, Horan MA, Ferguson MW (1998). Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing. Lab lnvest. 78: 47–58.

    CAS  Google Scholar 

  123. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E (1998). Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. Trends Biotechnol. 111: 850–7.

    CAS  Google Scholar 

  124. Swift ME, Burns AL, Gray KL, DiPietro LA (2001). Age-related alterations in the inflammatory response to dermal injury. Trends Biotechnol. 117: 1027–35.

    CAS  Google Scholar 

  125. Moore K, Ruge F, Harding KG (1997). T lymphocytes and the lack of activated macrophages in wound margin biopsies from chronic leg ulcers. Br J Dermatol. 137: 188–94.

    Article  PubMed  CAS  Google Scholar 

  126. Bradley SF, Vibhagool A, Kunkel SL, Kauffman CA (1989). Monokine secretion in aging and protein malnutrition. J Leukoc Biol. 45: 510–14.

    PubMed  CAS  Google Scholar 

  127. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA (1998). Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci. 53: M20–6

    Article  PubMed  CAS  Google Scholar 

  128. Swift ME, Kleinman HK, DiPietro LA (1999). Impaired wound repair and delayed angiogenesis in aged mice. Lab lnvest. 79: 1479–87.

    CAS  Google Scholar 

  129. Luster AD, Cardiff RD, MacLean JA, Crowe K, Granstein RD (1998). Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc Assoc Am Physicians 110: 183–96.

    PubMed  CAS  Google Scholar 

  130. Devalaraja RM, Nanney LB, Du J, et al. (2000). Delayed wound healing in CXCR2 knockout mice. Trends Biotechnol. 115: 234–44.

    CAS  Google Scholar 

  131. Patel HR, Miller RA (1992). Age-associated changes in mitogen-induced protein phosphorylation in murine T lymphocytes. Eur J lmmunol. 22: 253–60.

    Article  CAS  Google Scholar 

  132. Shi J, Miller RA (1993). Differential tyrosine-specific protein phosphorylation in mouse T lymphocyte subsets. Effect of age. J lmmunol. 151: 730–9.

    CAS  Google Scholar 

  133. Chakravarti B, Abraham GN (1999). Aging and T-cell-mediated immunity. Mech Ageing Dev. 108: 183–206.

    Article  PubMed  CAS  Google Scholar 

  134. Lipschitz DA, Udupa KB (1986). Influence of aging and protein deficiency on neutrophil function. J Gerontol. 41: 690–4.

    Article  PubMed  CAS  Google Scholar 

  135. Davila DR, Edwards CK, Arkins S, Simon J, Kelley KW (1990). Interferon-gammainduced priming for secretion of superoxide anion and tumor necrosis factor-alpha declines in macrophages from aged rats. FASEB J. 4: 2906–11.

    PubMed  CAS  Google Scholar 

  136. Alvarez E, Santa MC (1996). Influence of the age and sex on respiratory burst of human monocytes. Mech Ageing Dev. 90: 157–61.

    Article  PubMed  CAS  Google Scholar 

  137. Peterson JM, Barbul A, Breslin RJ, Wasserkrug HL, Efron G (1987). Significance of T-lymphocytes in wound healing. Surgery 102: 300–5.

    PubMed  CAS  Google Scholar 

  138. Barbul A, Shawe T, Rotter SM, Efron JE, Wasserkrug HL, Badawy SB (1989). Wound healing in nude mice: a study on the regulatory role of lymphocytes in fibroplasia. Surgery 105: 764–9.

    PubMed  CAS  Google Scholar 

  139. Tarnuzzer RW, Schultz GS (1996). Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 4: 321–5.

    Article  PubMed  CAS  Google Scholar 

  140. Wallace HJ, Stacey MC (1998). Levels of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in chronic venous leg ulcers–correlations to healing status. Trends Biotechnol. 110: 292–6.

    CAS  Google Scholar 

  141. Agren MS, Eaglstein WH, Ferguson MW, et al. (2000). Causes and effects of the chronic inflammation in venous leg ulcers. Acta Derm Venereol Suppl (Stockh), 210: 3–17.

    CAS  Google Scholar 

  142. Holt DR, Kirk SJ, Regan MC, Hurson M, Lindblad WJ, Barbul A (1992). Effect of age on wound healing in healthy human beings. Surgery, 112: 293–7.

    PubMed  CAS  Google Scholar 

  143. Gilchrest BA (1983). In vitro assessment of keratinocyte aging. Trends Biotechnol. 81: 184s - 9s.

    CAS  Google Scholar 

  144. Rattan SI, Derventzi A (1991). Altered cellular responsiveness during ageing. Bioessays 13: 601–6.

    Article  PubMed  CAS  Google Scholar 

  145. Norsgaard H, Clark BF, Rattan SI (1996). Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol. 31: 563–70.

    Article  PubMed  CAS  Google Scholar 

  146. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995). The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 95: 2281–90.

    Article  PubMed  CAS  Google Scholar 

  147. Parks WC (1995). The production, role,and regulation of matrix metalloproteinsases in the healing epidermis. Wounds: Compendium Clin Res Pract. 7: 23A - 37A.

    Google Scholar 

  148. Saarialho-Kere UK (1998). Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers. Arch Dermatol Res. 290 (Suppl): S47–54.

    Article  PubMed  CAS  Google Scholar 

  149. Mirastschijski U, Impola U, Jahkola T, Karlsmark T, Agren MS, Saarialho-Kere U (2002). Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Hum Pathol. 33: 355–64.

    Article  PubMed  CAS  Google Scholar 

  150. Xia YP, Zhao Y, Tyrone JW, Chen A, Mustoe TA (2001). Differential activation of migration by hypoxia in keratinocytes isolated from donors of increasing age: implication for chronic wounds in the elderly. Trends Biotechnol. 116: 50–6.

    CAS  Google Scholar 

  151. Deie M, Marui T, Allen CR, et al. (1997). The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-beta 1 or EGF. Mech Ageing Dev. 97: 121–30.

    Article  PubMed  CAS  Google Scholar 

  152. Passi A, Albertini R, Campagnari F, De Luca G (1997). Modifications of proteoglycans extracted from monolayer cultures of young and senescent human skin fibroblasts. FEBS Lett. 420: 175–8.

    Article  PubMed  CAS  Google Scholar 

  153. Passi A, Albertini R, Campagnari F, De Luca G (1997). Modifications of proteoglycans secreted into the growth medium by young and senescent human skin fibroblasts. FEBS Lett. 402: 286–90.

    Article  PubMed  CAS  Google Scholar 

  154. Gibson JM, Milam SB, Klebe RJ (1989). Late passage cells display an increase in contractile behavior. Mech Ageing Dev. 48: 101–10.

    Article  PubMed  CAS  Google Scholar 

  155. Schneider EL, Mitsui Y (1976). The relationship between in vitro cellular aging, in vivo human age. Proc Natl Acad Sci USA 73: 3584–8.

    Article  PubMed  CAS  Google Scholar 

  156. Kondo H, Yonezawa Y (1992). Changes in the migratory ability of human lung and skin fibroblasts during in vitro aging and in vivo cellular senescence. Mech Ageing Dev. 63: 223–33.

    Article  PubMed  CAS  Google Scholar 

  157. Muggleton-Harris AL, Reisert PS, Burghoff RL (1982). In vitro characterization of response to stimulus (wounding) with regard to ageing in human skin fibroblasts. Mech Ageing Dev. 19: 37–43.

    CAS  Google Scholar 

  158. Bell E, Ivarsson B, Merrill C (1979). Production ofa tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76: 1274–8.

    Article  PubMed  CAS  Google Scholar 

  159. Millis AJ, Sottile J, Hoyle M, Mann DM, Diemer V (1989). Collagenase production by early and late passage cultures of human fibroblasts. Exp Gerontol. 24: 559–75.

    Article  PubMed  CAS  Google Scholar 

  160. Ballas CB, Davidson JM (2001). Delayed wound healing in aged rats is associated with increased collagen gel remodeling and contraction by skin fibroblasts, not with differences in apoptotic or myofibroblast cell populations. Wound Repair Regen. 9: 223–37.

    Article  PubMed  CAS  Google Scholar 

  161. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999). Microarray analysis of replicative senescence. Curr Biol. 9: 939–45.

    Article  PubMed  CAS  Google Scholar 

  162. Hasan A, Murata H, Falabella A, et al. (1997). Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor-beta 1. J Dermatol Sci. 16: 59–66.

    Article  PubMed  CAS  Google Scholar 

  163. Stanley AC, Park HY, Phillips TJ, Russakovsky V, Menzoian JO (1997). Reduced growth of dermal fibroblasts from chronic venous ulcers can be stimulated with growth factors. J Yasc Surg. 26: 994–9.

    CAS  Google Scholar 

  164. Mendez MV, Stanley A, Park HY, Shon K, Phillips T, Menzoian JO (1998). Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Yasc Surg. 28: 876–83.

    CAS  Google Scholar 

  165. Mendez MV, Stanley A, Phillips T, Murphy M, Menzoian JO, Park HY (1998). Fibroblasts cultured from distal lower extremities in patients with venous reflux display cellular characteristics of senescence. J Yasc Surg. 28: 1040–50.

    CAS  Google Scholar 

  166. Vande BJ, Rudolph R, Hollan C, Haywood-Reid PL (1998). Fibroblast senescence in pressure ulcers. Wound Repair Regen. 6: 38–49.

    Article  Google Scholar 

  167. Agren MS, Steenfos HH, Dabelsteen S, Hansen JB, Dabelsteen E (1999). Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent. Trends Biotechnol. 112: 463–9.

    CAS  Google Scholar 

  168. Vande BJ, Smith PD, Haywood-Reid PL, Munson AB, Soules KA, Robson MC (2001). Dynamic forces in the cell cycle affecting fibroblasts in pressure ulcers. Wound Repair Regen. 9: 19–27.

    Article  Google Scholar 

  169. Herrick SE, Ireland GW, Simon D, McCollum CN, Ferguson MW (1996). Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. Trends Biotechnol. 106: 187–93.

    CAS  Google Scholar 

  170. Osanai M, Tamaki T, Yonekawa M, Kawamura A, Sawada N (2002). Transient increase in telomerase activity of proliferating fibroblasts and endothelial cells in granulation tissue of the human skin. Wound Repair Regen. 10: 59–66.

    Article  PubMed  Google Scholar 

  171. Van de Kerkhof PC, Van Bergen B, Spruijt K, Kuiper JP (1994). Age-related changes in wound healing. Clin Exp Dermatol. 19: 369–74.

    Article  PubMed  Google Scholar 

  172. Reed MJ, Corsa A, Pendergrass W, Penn P, Sage EH, Abrass IB (1998). Neovascularization in aged mice: delayed angiogenesis is coincident with decreased levels of transforming growth factor beta1 and type I collagen. Am J Pathol. 152: 113–23.

    PubMed  CAS  Google Scholar 

  173. Kramer RH, Fuh GM, Bensch KG, Karasek MA (1985). Synthesis of extracellular matrix glycoproteins by cultured microvascular endothelial cells isolated from the dermis of neonatal and adult skin. J Cell Physiol. 123: 1–9.

    Article  PubMed  CAS  Google Scholar 

  174. Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985). Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–71.

    Article  PubMed  CAS  Google Scholar 

  175. Chang E, Harley CB (1995). Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92: 11190–4.

    Article  PubMed  CAS  Google Scholar 

  176. Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A (2000). Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 152: 391–8.

    Article  PubMed  CAS  Google Scholar 

  177. Herouy Y, Mellios P, Bandemir E, et al. (2000). Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds. Int J Mol Med. 6: 515–19.

    PubMed  CAS  Google Scholar 

  178. Pawelec G, Solana R, Remarque E, Mariani E (1998). Impact of aging on innate immunity. J Leukoc Biol. 64: 703–12.

    PubMed  CAS  Google Scholar 

  179. Weng NP, Levine BL, June CH, Hodes RJ (1995). Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA 92: 11091–4.

    Article  PubMed  CAS  Google Scholar 

  180. Ho VCY (1999). Benign epithelial tumors. In: Freedberg IM, Eisen AZ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, pp. 873–90.

    Google Scholar 

  181. Teraki E, Tajima S, Manaka I, Kawashima M, Miyagishi M, Imokawa G (1996). Role of endothelin-1 in hyperpigmentation in seborrhoeic keratosis. Br J Dermatol. 135: 918–23.

    Article  PubMed  CAS  Google Scholar 

  182. Imokawa G, Yada Y, Miyagishi M (1992). Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem. 267: 24675–80.

    PubMed  CAS  Google Scholar 

  183. Lin AN, Carter DM, Balin AK (1989). Nonmelanoma skin cancers in the elderly. In: Gilchrest BA, eds. Clinics in Geriatric Medicine. Philadelphia: W.B. Saunders Co., pp. 161–70.

    Google Scholar 

  184. Morris BT, Sober AJ (1989). Cutaneous malignant melanoma in the older patient. In: Gilchrest BA, eds. Clinics in Geriatric Medicine. Philadelphia: W.B. Saunders Co., pp. 171–81.

    Google Scholar 

  185. Leffell DJ, Fitzgerald DA (1999). Basal cell carcinoma. In: Freedberg IM, Eisen AZ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, pp. 857–64.

    Google Scholar 

  186. Brash DE, Rudolph JA, Simon JA, et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88: 10124–8.

    Article  PubMed  CAS  Google Scholar 

  187. Ziegler A, Leffell DJ, Kunala S, et al. (1993). Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90: 4216–20.

    Article  PubMed  CAS  Google Scholar 

  188. Johnson RL, Rothman AL, Xie J, et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–71.

    Article  PubMed  CAS  Google Scholar 

  189. Xie J, Murone M, Luoh SM, et al. (1998). Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–2.

    Article  PubMed  CAS  Google Scholar 

  190. Dahmane N, Lee J, Robins P, Heller P, Ruiz (1997). Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389: 876–81.

    CAS  Google Scholar 

  191. Herbst RA, Gutzmer R, Matiaske F, et al. (1997). Further evidence for ultraviolet light induction of CDKN2 (p16INK4) mutations in sporadic melanoma in vivo. J Invest Dermatol. 108: 950.

    Article  PubMed  CAS  Google Scholar 

  192. Frank SM, Raja SN, Bulcao C, Goldstein DS (2000). Age-related thermoregulatory differences during core cooling in humans. Am JPhysiol RegulIntegr Comp Physiol. 279: R349–54

    CAS  Google Scholar 

  193. Smolander J (2002). Effect of cold exposure on older humans. Int J Sports Med. 23: 86–92.

    Article  PubMed  CAS  Google Scholar 

  194. Scott PJ, Reid JL (1982). The effect of age on the responses of human isolated arteries to noradrenaline. Br J Clin Pharmacol. 13: 237–9.

    Article  PubMed  CAS  Google Scholar 

  195. Nielsen H, Hasenkam JM, Pilegaard HK, Aalkjaer C, Mortensen FV (1992). Age-dependent changes in alpha-adrenoceptor-mediated contractility of isolated human resistance arteries. Am J Physiol. 263: H1190–6

    PubMed  CAS  Google Scholar 

  196. Docherty JR (1990). Cardiovascular responses in ageing: a review. Pharmacol Rev. 42: 103–25.

    PubMed  CAS  Google Scholar 

  197. Inoue Y, Shibasaki M, Hirata K, Araki T (1998). Relationship between skin blood flow and sweating rate, and age related regional differences. Eur J Appl Physiol Occup Physiol. 79: 17–23.

    Article  PubMed  CAS  Google Scholar 

  198. Inoue Y, Shibasaki M, Ueda H, Ishizashi H (1999). Mechanisms underlying the age-related decrement in the human sweating response. Eur J Appl Physiol Occup Physiol. 79: 121–6.

    Article  PubMed  CAS  Google Scholar 

  199. Elias PM, Ghadially R (2002). The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med. 18: 103–20.

    Article  PubMed  Google Scholar 

  200. Ghadially R (1998). Aging and the epidermal permeability barrier: implications for contact dermatitis. Am J Contact Dermat. 9: 162–9.

    Article  PubMed  CAS  Google Scholar 

  201. Davies CE, Wilson MJ, Hill KE, et al. (2001). Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated. Wound Repair Regen. 9: 332–40.

    Article  PubMed  CAS  Google Scholar 

  202. Trautinger F (2001). Heat shock proteins in the photobiology of human skin. J Photochem Photobiol. 63: 70–7.

    Article  CAS  Google Scholar 

  203. Volloch V, Rits S (1999). A natural extracellular factor that induces Hsp72, inhibits apoptosis, and restores stress resistance in aged human cells. Exp Cell Res. 253: 483–92.

    Article  PubMed  CAS  Google Scholar 

  204. Park KC, Kim DS, Choi HO, et al. (2000). Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch Dermatol Res. 292: 482–7.

    Article  PubMed  CAS  Google Scholar 

  205. Muramatsu T, Hatoko M, Tada H, Shirai T, Ohnishi T (1996). Age-related decrease in the inductability of heat shock protein 72 in normal human skin. Br J Dermatol. 134: 1035–8.

    Article  PubMed  CAS  Google Scholar 

  206. Gutsmann-Conrad A, Heydari AR, You S, Richardson A (1998). The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp Cell Res. 241: 404–13.

    Article  PubMed  CAS  Google Scholar 

  207. Finch CE (1990). Longevity, Senescence and the Genome. Chicago: University of Chicago Press.

    Google Scholar 

  208. Hayflick L (1965). The limited in vitro life time of human diploid cell strains. Exp Cell Res. 37: 614–36.

    Article  PubMed  CAS  Google Scholar 

  209. Griffith JD, Comeau L, Rosenfield S, et al. (1999). Mammalian telomeres end in a large duplex loop. Cell. 97: 503–14.

    Article  PubMed  CAS  Google Scholar 

  210. Olovnikov AM (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 41: 181–90.

    Article  PubMed  CAS  Google Scholar 

  211. Boukamp P (2001). Ageing mechanisms: the role of telomere loss. Clin Exp Dermatol. 26: 562–5.

    Article  PubMed  CAS  Google Scholar 

  212. Figueroa R, Lindenmaier H, Hergenhahn M, Nielsen KV, Boukamp P (2000). Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res. 60: 2770–4.

    PubMed  CAS  Google Scholar 

  213. Morin GB (1997). Telomere control of replicative lifespan. Exp Gerontol. 32: 375–82.

    Article  PubMed  CAS  Google Scholar 

  214. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998). Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95: 10614–19.

    Article  PubMed  CAS  Google Scholar 

  215. Tesco G, Vergelli M, Grassilli E, et al. (1998). Growth properties and growth factor responsiveness in skin fibroblasts from centenarians. Biochem Biophys Res Commun. 244: 912–16.

    Article  PubMed  CAS  Google Scholar 

  216. Wang E (1995). Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55: 2284–92.

    PubMed  CAS  Google Scholar 

  217. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res. 211: 90–8.

    Article  PubMed  CAS  Google Scholar 

  218. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol. 16: 859–67.

    PubMed  CAS  Google Scholar 

  219. Stein GH, Beeson M, Gordon L (1990). Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249: 666–9.

    Article  PubMed  CAS  Google Scholar 

  220. Shay JW, Pereira-Smith OM, Wright WE (1991). A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res. 196: 33–9.

    Article  PubMed  CAS  Google Scholar 

  221. Harley CB (1991). Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 256: 271–82.

    Article  PubMed  CAS  Google Scholar 

  222. Dhaene K, Van Marck E, Parwaresch R (2000). Telomeres, telomerase and cancer: an up-date. Virchows Arch. 437: 1–16.

    Article  PubMed  CAS  Google Scholar 

  223. Nugent CI, Lundblad V (1998). The telomerase reverse transcriptase: components and regulation. Genes Dev. 12: 1073–85.

    Article  PubMed  CAS  Google Scholar 

  224. Jiang XR, Jimenez G, Chang E, et al. (1999). Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet. 21: 111–14.

    Article  PubMed  CAS  Google Scholar 

  225. Morales CP, Holt SE, Ouellette M, et al. (1999). Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet. 21: 115–18.

    Article  PubMed  CAS  Google Scholar 

  226. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396: 84–8.

    Article  PubMed  CAS  Google Scholar 

  227. Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000). Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol. 166: 103–9.

    Article  PubMed  CAS  Google Scholar 

  228. Jones CJ, Kipling D, Morris M, et al. (2000). Evidence for a telomere-independent “clock” limiting RAS oncogene-driven proliferation of human thyroid epithelial cells. Mol Cell Biol. 20: 5690–9.

    Article  PubMed  CAS  Google Scholar 

  229. Ramirez RD, Morales CP, Herbert BS, et al. (2001). Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15: 398–403.

    Article  PubMed  CAS  Google Scholar 

  230. Harman D (1956). Aging a theory based on free radical and radiation chemistry. J Gerontol. 11: 298–300.

    Article  PubMed  CAS  Google Scholar 

  231. Sohal RS (2002). Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 33: 37–44.

    Article  PubMed  CAS  Google Scholar 

  232. Kohen R, Gati I (2000). Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 148: 149–57.

    Article  PubMed  CAS  Google Scholar 

  233. Halliwell B, Gutteridge JM, Cross CE (1992). Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 119: 598–620.

    PubMed  CAS  Google Scholar 

  234. Campisi J (1998). The role of cellular senescence in skin aging. JInvestig Dermatol Symp Proc. 3: 1–5.

    CAS  Google Scholar 

  235. Uitto J, Fazio MJ, Olsen DR (1989). Molecular mechanisms of cutaneous aging. Age-associated connective tissue alterations in the dermis. J Am Acad Dermatol. 21: 614–22.

    Article  PubMed  CAS  Google Scholar 

  236. Rudolph KL, Chang S, Lee HW, et al. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–12.

    Article  PubMed  CAS  Google Scholar 

  237. Blasco MA, Lee HW, Hande MP, et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Article  PubMed  CAS  Google Scholar 

  238. Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H, Muller F (1996). Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93: 8983–8.

    Article  PubMed  CAS  Google Scholar 

  239. Malik HS, Burke WD, Eickbush TH (2000). Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene 251: 101–8.

    Article  PubMed  CAS  Google Scholar 

  240. Mori A, Utsumi K, Liu J, Hosokawa M (1998). Oxidative damage in the senescence-accelerated mouse. Ann NYAcad Sci. 854: 239–50.

    Article  CAS  Google Scholar 

  241. Kuro-o M, Matsumura Y, Aizawa H, et al. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390: 45–51.

    Article  PubMed  CAS  Google Scholar 

  242. Tyner SD, Venkatachalam S, Choi J, et al. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.

    Google Scholar 

  243. Migliaccio E, Giorgio M, Mele S, et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402: 309–13.

    Article  PubMed  CAS  Google Scholar 

  244. Lithgow GJ, Andersen JK (2000). The real Dorian Gray mouse. Bioessays 22: 410–13.

    Article  PubMed  CAS  Google Scholar 

  245. Orr WC, Sohal RS (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–30.

    Article  PubMed  CAS  Google Scholar 

  246. Melov S, Ravenscroft J, Malik S, et al. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science 289: 1567–9.

    Article  PubMed  CAS  Google Scholar 

  247. Huang TT, Carlson EJ, Raineri I, Gillespie AM, Kozy H, Epstein CJ (1999). The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann NY Acad Sci. 893: 95–112.

    Article  PubMed  CAS  Google Scholar 

  248. Ikegami T, Suzuki Y, Shimizu T, Isono K, Koseki H, Shirasawa T (2002). Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun. 296: 729–36.

    Article  PubMed  CAS  Google Scholar 

  249. Bohr VA (2002). Human premature aging syndromes and genomic instability. Mech Ageing Dev. 123: 987–93.

    Article  PubMed  CAS  Google Scholar 

  250. Gray MD, Shen JC, Kamath-Loeb AS, et al. (1997). The Werner syndrome protein is a DNA helicase. Nat Genet. 17: 100–3.

    Article  PubMed  CAS  Google Scholar 

  251. Goto M (2001). From Premature Gray Hair to Helicase - Werner Syndrome: Implications for Aging and Cancer. Japanese Science Society.

    Google Scholar 

  252. Wyllie FS, Jones CJ, Skinner JW, et al. (2000). Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet. 24: 16–17.

    Article  PubMed  CAS  Google Scholar 

  253. Wartanowicz M, Panczenko-Kresowska B, Ziemlanski S, Kowalska M, Okolska G (1984). The effect of alpha-tocopherol and ascorbic acid on the serum lipid peroxide level in elderly people. Ann Nutr Metab. 28: 186–91.

    Article  PubMed  CAS  Google Scholar 

  254. Penn ND, Purkins L, Kelleher J, Heatley RV, Mascie-Taylor BH, Belfield PW (1991). The effect of dietary supplementation with vitamins A, C and E on cell-mediated immune function in elderly long-stay patients: a randomized controlled trial. Age Ageing 20: 169–74.

    CAS  Google Scholar 

  255. Dreher F, Maibach H (2001). Protective effects of topical antioxidants in humans. Curr Probl Dermatol. 29: 157–64.

    Article  PubMed  CAS  Google Scholar 

  256. Dreher F, Gabard B, Schwindt DA, Maibach HI (1998). Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo. Br J Dermatol. 139: 332–9.

    Article  PubMed  CAS  Google Scholar 

  257. Fisher GJ, Talwar HS, Lin J, et al. (1998). Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogenactivated protein kinase pathways in human skin in vivo. J Clin Invest. 101: 1432–40.

    Article  PubMed  CAS  Google Scholar 

  258. Griffiths CE, Russman AN, Majmudar G, Singer RS, Hamilton TA, Voorhees JJ (1993). Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N Engl J Med. 329: 530–5.

    Article  PubMed  CAS  Google Scholar 

  259. Ellis CN, Weiss JS, Hamilton TA, Headington JT, Zelickson AS, Voorhees JJ (1990). Sustained improvement with prolonged topical tretinoin (retinoic acid) for photoaged skin. J Am Acad Dermatol. 23: 629–37.

    Article  PubMed  CAS  Google Scholar 

  260. Greenwald RA, Moak SA, Ramamurthy NS, Golub LM (1992). Tetracyclines suppress matrix metalloproteinase activity in adjuvant arthritis and in combination with flurbiprofen, ameliorate bone damage. J Rheumatol. 19: 927–38.

    PubMed  CAS  Google Scholar 

  261. Ingman T, Sorsa T, Suomalainen K, et al. (1993). Tetracycline inhibition and the cellular source of collagenase in gingival crevicular fluid in different periodontal diseases. A review article. J Periodontol. 64: 82–8.

    Article  PubMed  CAS  Google Scholar 

  262. Oikarinen A (2000). Systemic estrogens have no conclusive beneficial effect on human skin connective tissue. Acta Obstet Gynecol Scand. 79: 250–4.

    Article  PubMed  CAS  Google Scholar 

  263. Callens A, Vaillant L, Lecomte P, Berson M, Gall Y, Lorette G (1996). Does hormonal skin aging exist? A study of the influence of different hormone therapy regimens on the skin of postmenopausal women using non-invasive measurement techniques. Dermatology 193: 289–94.

    Article  PubMed  CAS  Google Scholar 

  264. Dunn LB, Damesyn M, Moore AA, Reuben DB, Greendale GA (1997). Does estrogen prevent skin aging? Results from the First National Health and Nutrition Examination Survey (NHANES I). Arch Dermatol. 133: 339–42.

    Article  PubMed  CAS  Google Scholar 

  265. Denda M, Koyama J, Hori J, et al. (1993). Age-and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res. 285: 415–17.

    Article  PubMed  CAS  Google Scholar 

  266. Reiser KM (1994). Influence of age and long-term dietary restriction on enzymatically mediated crosslinks and nonenzymatic glycation of collagen in mice. J Gerontol. 49: B71–9.

    Article  PubMed  CAS  Google Scholar 

  267. Sell DR, Lane MA, Johnson WA, et al. (1996). Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA 93: 485–90.

    Article  PubMed  CAS  Google Scholar 

  268. Leung WC, Harvey I (2002). Is skin ageing in the elderly caused by sun exposure or smoking? Br J Dermatol. 147: 1187–91.

    Article  PubMed  Google Scholar 

  269. Brownlee M (1994). Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 43: 836–41.

    Google Scholar 

  270. Takahashi M, Pischetsrieder M, Monnier VM (1997). Molecular cloning and expression of amadoriase isoenzyme (fructosyl amine:oxygen oxidoreductase, EC 1.5.3) from Aspergillus fumigatus. J Biol Chem. 272: 12505–7.

    Article  PubMed  CAS  Google Scholar 

  271. Schmidt AM, Vianna M, Gerlach M, et al. (1992). Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 267: 14987–97.

    PubMed  CAS  Google Scholar 

  272. Schmidt AM, Hori O, Cao R, et al. (1996). RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 (Suppl 3): S77–80.

    Article  PubMed  CAS  Google Scholar 

  273. Wang J, Hannon GJ, Beach DH (2000). Risky immortalization by telomerase. Nature 405: 755–6.

    Article  PubMed  CAS  Google Scholar 

  274. Hahn WC, Stewart SA, Brooks MW, et al. (1999). Inhibition of telomerase limits the growth of human cancer cells. Nat Med. 5: 1164–70.

    Article  PubMed  CAS  Google Scholar 

  275. Ghersetich I, Lotti T (1994). α-Interferon cream restores decreased levels of Langerhans/indeterminate (CD1a+) cells in aged and PUVA-treated skin. Skin Pharmacol. 7: 118–20.

    Google Scholar 

  276. Klapper W, Parwaresch R, Krupp G (2001). Telomere biology in human aging and aging syndromes. Mech Ageing Dev. 122: 695–712.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stephens, P. (2003). Aging of the Skin. In: Aspinall, R. (eds) Aging of the Organs and Systems. Biology of Aging and Its Modulation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0673-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0673-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6486-8

  • Online ISBN: 978-94-017-0673-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics