Skip to main content

Aging of the Nervous System

  • Chapter
Aging of the Organs and Systems

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 3))

  • 180 Accesses

Abstract

To most of us, the possible decline in memory, cognition and motor control is probably the most alarming prospect of impending old age. The changes that occur in the nervous system during aging can have severe consequences. The variation between individuals is great; for a few fortunate individuals, cognitive and motor function may be relatively unaffected even into very old age, while most suffer only mild decline. Many however, are affected by one of the neurodegenerative diseases, particularly Alzheimer’s disease and Parkinson’s disease. The distressing effects of these disorders and the increase in the number of sufferers as the aging population grows has made study of these diseases a major focus for gerontologists, but despite extensive study, their causes still remain to be firmly established. For many years, a full understanding of the pathology of these diseases has been hampered by the lack of knowledge about what constitutes “normal” or ”healthy” aging of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dani SU, Hori A, Walter GF (1997).Principles of Neural Aging. Amsterdam: Elsevier.

    Google Scholar 

  2. Hof PR, Mobbs CV (2001).Functional Neurobiology of Aging. San Diego: Academic Press.

    Google Scholar 

  3. Purves D, Augustine GJ, Fitzpatrick D, Katz L, LaMantia A-S, McNamara JO. Neuroscience. Sinauer: Sunderland, MA, USA.

    Google Scholar 

  4. Morrison JH, Hof PR (1997). Life and death of neurons in the aging brain. Science 278: 412–19.

    Article  PubMed  CAS  Google Scholar 

  5. Haug H (1997). The aging human cerebral cortex: morphometry of areal differences and their functional meaning. In: Dani SU, Walter GF, Hori A, eds. Principles of Neural Aging. Amsterdam: Elsevier.

    Google Scholar 

  6. Peters A, Morrison JH, Rosene DL, Hyman BT (1998). Feature article: are neurons lost from the primate cerebral cortex during normal aging. Cereb Cortex 8: 295–300.

    Article  PubMed  CAS  Google Scholar 

  7. Turlejski K, Djavadian R (2002). Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. Prog Brain Res. 136: 39–65.

    Article  PubMed  Google Scholar 

  8. Gundersen HJ, Bagger P, Bendtsen TF, et al. (1988). The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmis 96: 857–81.

    Article  PubMed  CAS  Google Scholar 

  9. Sterio DC (1984). The unbiased estimation of number and sizes of arbitrary particles using the disector. JMicrosc. 134 (Pt 2): 127–36.

    Article  CAS  Google Scholar 

  10. West MJ (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci. 22: 51–61.

    Article  PubMed  CAS  Google Scholar 

  11. Weindruch R, Kayo T, Lee CK, Prolla TA (2002). Gene expression profiling of aging using DNA microarrays. Mech Ageing Dev. 123: 177–93.

    Article  PubMed  CAS  Google Scholar 

  12. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 41: 17–24.

    Article  PubMed  CAS  Google Scholar 

  13. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. JNeurosci. 16: 4491–500.

    CAS  Google Scholar 

  14. Peters A, Rosene DL, Moss MB, et al. (1996). Neurobiological bases of age-related cognitive decline in the rhesus monkey. JNeuropathol Exp Neurol. 55: 861–74.

    CAS  Google Scholar 

  15. Peters A, Moss MB, Sethares C (2000). Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol. 419: 364–76.

    Article  PubMed  CAS  Google Scholar 

  16. Ma SY, Roytt M, Collan Y, Rinne JO (1999). Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol. 25: 394–99.

    Article  PubMed  CAS  Google Scholar 

  17. Ma SY, Roytt M, Collan Y, Rinne JO (1999). Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol. 409: 25–37.

    Article  PubMed  CAS  Google Scholar 

  18. Cameron HA, McKay RD (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. JComp Neurol. 435: 406–17.

    Article  CAS  Google Scholar 

  19. Gould E, Reeves AJ, Graziano MS, Gross CG (1999). Neurogenesis in the neocortex of adult primates. Science 286: 548–52.

    Article  PubMed  CAS  Google Scholar 

  20. Svendsen CN, Caldwell MA, Ostenfeld T (1999). Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9: 499–513.

    Article  PubMed  CAS  Google Scholar 

  21. Rao MS, Mattson MP (2001). Stem cells and aging: expanding the possibilities. Mech Ageing Dev. 122: 713–34.

    Article  PubMed  CAS  Google Scholar 

  22. Rapp PR, Gallagher M (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci USA 93: 9926–30.

    Article  PubMed  CAS  Google Scholar 

  23. Dani S (1997). Histological markers of neuronal aging and their meaning. In: Dani SU, Walter GF, Hori A (eds). Principles of Neural Aging. Amsterdam: Elsevier.

    Google Scholar 

  24. Cupp CJ, Uemura E (1980). Age-related changes in prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp Neurol. 69: 143–63.

    Article  PubMed  CAS  Google Scholar 

  25. de Brabander JM, Kramers RJ, Uylings HB (1998). Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur JNeurosci. 10: 1261–9.

    Article  Google Scholar 

  26. Jacobs B, Driscoll L, Schall M (1997). Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. JComp Neurol. 386: 661–80.

    Article  CAS  Google Scholar 

  27. Peters A, Sethares C, Moss MB (1998). The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey. Cereb Cortex 8: 671–84.

    Article  PubMed  CAS  Google Scholar 

  28. Page TL, Einstein M, Duan H, et al. (2002). Morphological alterations in neurons forming corticocortical projections in the neocortex of aged Patas monkeys. Neurosci Lett. 317: 37–41.

    Article  PubMed  CAS  Google Scholar 

  29. Tigges J, Herndon JG, Rosene DL (1995). Mild age-related changes in the dentate gyrus of adult rhesus monkeys. Acta Anat (Basel) 153: 39–48.

    Article  CAS  Google Scholar 

  30. Levine MS (1988). Neurophysiological and morphological alterations in caudate neurons in aged cats. Ann NY Acad Sci. 515: 314–28.

    Article  PubMed  CAS  Google Scholar 

  31. Levine MS, Adinolfi AM, Fisher RS, Hull CD, Guthrie D, Buchwald NA (1988). Ultrastructural alterations in caudate nucleus in aged cats. Brain Res. 440: 267–79.

    Article  PubMed  CAS  Google Scholar 

  32. McNeill TH, Koek LL (1990). Differential effects of advancing age on neurotransmitter cell loss in the substantia nigra and striatum of C57BL/6N mice. Brain Res. 521: 107–17.

    Article  PubMed  CAS  Google Scholar 

  33. Emborg ME, Ma SY, Mufson EJ, et al. (1998). Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol. 401: 253–65.

    Article  PubMed  CAS  Google Scholar 

  34. Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000). Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. JNeurosci. 20: 6587–93.

    CAS  Google Scholar 

  35. Morrison JH, Hof PR (2002). Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease. Prog Brain Res. 136: 467–86.

    Article  PubMed  CAS  Google Scholar 

  36. Segovia G, Porras A, Del Arco A, Mora F (2001). Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev. 122: 1–29.

    Article  PubMed  CAS  Google Scholar 

  37. Hof PR, Duan H, Page TL, et al. (2002). Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res. 928: 175–86.

    Article  PubMed  CAS  Google Scholar 

  38. Gazzaley AH, Siegel SJ, Kordower JH, Mufson EJ, Morrison JH (1996). Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proc Natl Acad Sci USA 93: 3121–5.

    Article  PubMed  CAS  Google Scholar 

  39. Adams MM, Smith TD, Moga D, et al. (2001). Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats. J Comp Neurol. 432: 230–43.

    Article  PubMed  CAS  Google Scholar 

  40. Joyce JN (2001). The basal ganglia dopaminergic systems in normal aging and Parkinson’s disease. In: Hof PR, Mobbs CV, eds. Functional Neurobiology of Aging. San Diego: Academic Press.

    Google Scholar 

  41. Stanford JA, Herbert MA, Gerhardt G (2001). Biochemical and anatomical changes in basal ganglia of aging animals. In: Hof PR, Mobbs CV, eds. Functional Neurobiology of Aging. San Diego: Academic Press.

    Google Scholar 

  42. Himi T, Cao M, Mori N (1995). Reduced expression of the molecular markers of dopaminergic neuronal atrophy in the aging rat brain. J Gerontol A Biol Sci Med Sci. 50: B193–200.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98: 1930–4.

    Article  PubMed  CAS  Google Scholar 

  44. Weindruch R, Prolla TA (2002). Gene expression profile of the aging brain. Arch Neurol. 59: 1712–14.

    Article  PubMed  Google Scholar 

  45. Peters A, Sethares C (2002). Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol. 442: 277–91.

    Article  PubMed  Google Scholar 

  46. Peters A (2002). Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res. 136: 455–65.

    Article  PubMed  Google Scholar 

  47. Peters A, Josephson K, Vincent SL (1991). Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec. 229: 384–98.

    Article  PubMed  CAS  Google Scholar 

  48. Major DE, Kesslak JP, Cotman CW, Finch CE, Day JR (1997). Life-long dietary restriction attenuates age-related increases in hippocampal glial fibrillary acidic protein mRNA. Neurobiol Aging 18: 523–6.

    Article  PubMed  CAS  Google Scholar 

  49. Morgan TE, Xie Z, Goldsmith S, et al. (1999). The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89: 687–99.

    Article  PubMed  CAS  Google Scholar 

  50. Sandell JH, Peters A (2001). Effects of age on nerve fibers in the rhesus monkey optic nerve. J Comp Neurol. 429: 541–53.

    Article  PubMed  CAS  Google Scholar 

  51. Peters A, Sethares C, Killiany RJ (2001). Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. JComp Neurol. 435: 241–8.

    Article  CAS  Google Scholar 

  52. Peters A, Moss MB, Sethares C (2001). The effects of aging on layer 1 of primary visual cortex in the rhesus monkey. Cereb Cortex 11: 93–103.

    Article  PubMed  CAS  Google Scholar 

  53. Xi MC, Liu RH, Engelhardt JK, Morales FR, Chase MH (1999). Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat. Neuroscience 92: 219–25.

    Article  PubMed  CAS  Google Scholar 

  54. Larsson L, Ansved T (1995). Effects of ageing on the motor unit. Prog Neurobiol. 45: 397–458.

    Article  PubMed  CAS  Google Scholar 

  55. Popken GJ, Farel PB (1997). Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. JComp Neurol. 386: 8–15.

    Article  CAS  Google Scholar 

  56. Devor M, Govrin-Lippmann R (1991). Neurogenesis in adult rat dorsal root ganglia: on counting and the count. Somatosens Mot Res. 8: 9–12.

    Article  PubMed  CAS  Google Scholar 

  57. La Forte RA, Melville S, Chung K, Coggeshall RE (1991). Absence of neurogenesis of adult rat dorsal root ganglion cells. Somatosens Mot Res. 8: 3–7.

    Article  PubMed  Google Scholar 

  58. Mohammed HA, Santer RM (2001). Total neuronal numbers of rat lumbosacral primary afferent neurons do not change with age. Neurosci Lett. 304: 149–52.

    Article  PubMed  CAS  Google Scholar 

  59. Bergman E, Ulfhake B (1998). Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol. 396: 211–22.

    Article  PubMed  CAS  Google Scholar 

  60. Bergman E, Carlsson K, Liljeborg A, Manders E, Hokfelt T, Ulfhake B (1999). Neuropeptides, nitric oxide synthase and GAP-43 in B4-binding and RT97 immunoreactive primary sensory neurons: normal distribution pattern and changes after peripheral nerve transection and aging. Brain Res. 832: 63–83.

    Article  PubMed  CAS  Google Scholar 

  61. Mohammed H, Santer RM (2001). Distribution and changes with age of nitric oxide synthase-immunoreactive nerves of the rat urinary bladder, ureter and in lumbosacral sensory neurons. Eur JMorphol. 39: 137–44.

    CAS  Google Scholar 

  62. Mohammed H, Hannibal J, Fahrenkrug J, Santer R (2002). Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: effects of age. Urol Res. 30: 248–55.

    Article  PubMed  CAS  Google Scholar 

  63. Ulfhak B, Bergman E, Fundin BT (2002). Impairment of peripheral sensory innervation in senescence. Auton Neurosci. 96: 43–9.

    Article  PubMed  CAS  Google Scholar 

  64. Schmidt RE (2002). Age-related sympathetic ganglionic neuropathology: human pathology and animal models. Auton Neurosci. 96: 63–72.

    Article  PubMed  CAS  Google Scholar 

  65. Low PA, Opfer-Gehrking TL, Proper CJ, Zimmerman I (1990). The effect of aging on cardiac autonomic and postganglionic sudomotor function. Muscle Nerve 13: 152–7.

    Article  PubMed  CAS  Google Scholar 

  66. Ferrari AU, Daffonchio A, Gerosa S, Mancia G (1991). Alterations in cardiac parasympathetic function in aged rats. Am JPhysiol. 260: H647–9.

    CAS  Google Scholar 

  67. Sato A, Sato Y, Suzuki H (1985). Aging effects on conduction velocities of myelinated and unmyelinated fibers of peripheral nerves. Neurosci Lett. 53: 15–20.

    Article  PubMed  CAS  Google Scholar 

  68. Soltanpour N, Santer RM (1997). Vagal nuclei in the medulla oblongata: structure and activity are maintained in aged rats. JAuton Nery Syst. 67: 114–17.

    Article  CAS  Google Scholar 

  69. Soltanpour N, Santer RM (1996). Preservation of the cervical vagus nerve in aged rats: morphometric and enzyme histochemical evidence. JAuton Nery Syst. 60: 93–101.

    Article  CAS  Google Scholar 

  70. Dering MA, Santer RM, Watson AH (1996). Age-related changes in the morphology of preganglionic neurons projecting to the rat hypogastric ganglion. JNeurocytol. 25: 555–63.

    Article  CAS  Google Scholar 

  71. Dering MA, Santer RM, Watson AH (1998). Age-related changes in the morphology of preganglionic neurons projecting to the paracervical ganglion of nulliparous and multiparous rats. Brain Res. 780: 245–52.

    Article  PubMed  CAS  Google Scholar 

  72. Wigston DJ (1983). Maintenance of cholinergic neurones and synapses in the ciliary ganglion of aged rats. JPhysiol. 344: 223–31.

    CAS  Google Scholar 

  73. Cowen T, Gavazzi I (1998). Plasticity in adult and ageing sympathetic neurons. Prog Neurobiol. 54: 249–88.

    Article  PubMed  CAS  Google Scholar 

  74. Kuchel G, Cowen T (2001). The aged sympathetic nervous system. In: Hof PR, Mobbs CV, eds. Functional Neurobiology of Aging. San Diego: Academic Press, pp. 929–40.

    Chapter  Google Scholar 

  75. Santer RM, Dering MA, Ranson RN, Waboso HN, Watson AH (2002). Differential susceptibility to ageing of rat preganglionic neurones projecting to the major pelvic ganglion and of their afferent inputs. Auton Neurosci. 96: 73–81.

    Article  PubMed  CAS  Google Scholar 

  76. Schroer JA, Plurad SB, Schmidt RE (1992). Fine structure of presynaptic axonal terminals in sympathetic autonomic ganglia of aging and diabetic human subjects. Synapse 12: 1–13.

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt RE, Dorsey DA, McDaniel ML, Corbett JA (1993). Characterization of NADPH diaphorase activity in rat sympathetic autonomic ganglia–effect of diabetes and aging. Brain Res. 617: 343–8.

    Article  PubMed  CAS  Google Scholar 

  78. Warburton AL, Santer RM (1995). Decrease in synapsin I staining in the hypogastric ganglion of aged rats. Neurosci Lett. 194: 157–60.

    Article  PubMed  CAS  Google Scholar 

  79. Warburton AL, Santer RM (1997). The hypogastric and thirteenth thoracic ganglia of the rat: effects of age on the neurons and their extracellular environment. JAnat. 190 (Pt 1): 115–24.

    CAS  Google Scholar 

  80. Santer RM (1991). Morphological evidence for the maintenance of the cervical sympathetic system in aged rats. Neurosci Lett. 130: 248–50.

    Article  PubMed  CAS  Google Scholar 

  81. Cowen T (1993). Ageing in the autonomic nervous system: a result of nerve-target interactions? A review. Mech Ageing Dev. 68: 163–73.

    Article  PubMed  CAS  Google Scholar 

  82. Schmidt RE, Plurad SB, Parvin CA, Roth KA (1993). Effect of diabetes and aging on human sympathetic autonomic ganglia. Am JPathol. 143: 143–53.

    CAS  Google Scholar 

  83. Schmidt RE, Chae HY, Parvin CA, Roth KA (1990). Neuroaxonal dystrophy in aging human sympathetic ganglia. Am JPathol. 136: 1327–38.

    CAS  Google Scholar 

  84. Schmidt RE (1996). Neuropathology of human sympathetic autonomic ganglia. Microsc Res Tech. 35: 107–21.

    Article  PubMed  CAS  Google Scholar 

  85. Schmidt RE (1996). Synaptic dysplasia in sympathetic autonomic ganglia. JNeurocytol. 25: 777–91.

    Article  CAS  Google Scholar 

  86. Schmidt RE, Beaudet L, Plurad SB, Snider WD, Ruit KG (1995). Pathologic alterations in pre-and postsynaptic elements in aged mouse sympathetic ganglia. J Neurocytol. 24: 189–206.

    Article  PubMed  CAS  Google Scholar 

  87. Andrews TJ, Thrasivoulou C, Nesbit W, Cowen T (1996). Target-specific differences in the dendritic morphology and neuropeptide content of neurons in the rat SCG during development and aging. J Comp Neurol. 368: 33–44.

    Article  PubMed  CAS  Google Scholar 

  88. Andrews TJ, Cowen T (1994). In vivo infusion of NGF induces the organotypic regrowth of perivascular nerves following their atrophy in aged rats. J Neurosci. 14: 3048–58.

    PubMed  CAS  Google Scholar 

  89. Andrews TJ, Cowen T (1994). Nerve growth factor enhances the dendritic arborization of sympathetic ganglion cells undergoing atrophy in aged rats. JNeurocytol. 23: 234–41.

    Article  CAS  Google Scholar 

  90. Schmidt RE, Beaudet LN, Plurad SB, Dorsey DA (1997). Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res. 769: 375–83.

    Article  PubMed  CAS  Google Scholar 

  91. Schmidt RE, Plurad SB, Modert CW (1983). Neuroaxonal dystrophy in the autonomic ganglia of aged rats. JNeuropathol Exp Neurol. 42: 376–90.

    Article  CAS  Google Scholar 

  92. Schmidt RE, Plurad DA, Plurad SB, Cogswell BE, Diani AR, Roth KA (1989). Ultrastructural and immunohistochemical characterization of autonomic neuropathy in genetically diabetic Chinese hamsters. Lab Invest. 61: 77–92.

    PubMed  CAS  Google Scholar 

  93. Corns RA, Boolaky UV, Santer RM (2000). Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons. Neurosci Lett. 292: 91–4.

    Article  PubMed  CAS  Google Scholar 

  94. Corns RA, Hidaka H, Santer RM (2001). Decreased neurocalcin immunoreactivity in sympathetic and parasympathetic neurons of the major pelvic ganglion in aged rats. Neurosci Lett. 297: 81–4.

    Article  PubMed  CAS  Google Scholar 

  95. Gavazzi I, Cowen T (1996). Can the neurotrophic hypothesis explain degeneration and loss of plasticity in mature and ageing autonomic nerves. JAuton Nerv Syst. 58: 1–10.

    Article  CAS  Google Scholar 

  96. Goldberg PB, Kreider MS, McLean MR, Roberts J (1986). Effects of aging at the adrenergic cardiac neuroeffector junction. Fed Proc. 45: 45–7.

    PubMed  CAS  Google Scholar 

  97. Baker DM, Watson SP, Santer RM (1991). Evidence for a decrease in sympathetic control of intestinal function in the aged rat. Neurobiol Aging 12: 363–5.

    Article  PubMed  CAS  Google Scholar 

  98. Warburton AL, Santer RM (1994). Sympathetic and sensory innervation of the urinary tract in young adult and aged rats: a semi-quantitative histochemical and immunohistochemical study. Histochem J 26: 127–33.

    Article  PubMed  CAS  Google Scholar 

  99. Vega JA, Ricci A, Amenta F (1990). Age-dependent changes of the sympathetic innervation of the rat kidney. Mech Ageing Dev. 54: 185–96.

    Article  PubMed  CAS  Google Scholar 

  100. Kuchel GA, Crutcher KA, Naheed U, Thrasivoulou C, Cowen T (1999). NGF expression in the aged rat pineal gland does not correlate with loss of sympathetic axonal branches and varicosities. Neurobiol Aging 20: 685–93.

    Article  PubMed  CAS  Google Scholar 

  101. Wiley JW (2002). Aging and neural control of the GI tract: III. Senescent enteric nervous system: lessons from extraintestinal sites and nonmammalian species. Am J Physiol Gastrointest Liver Physiol. 283: G1020–6.

    PubMed  CAS  Google Scholar 

  102. Wade PR (2002). Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am JPhysiol Gastrointest Liver Physiol. 283: G489–95.

    CAS  Google Scholar 

  103. Hall KE (2002). Aging and neural control of the GI tract. II. Neural control of the aging gut: can an old dog learn new tricks. Am J Physiol Gastrointest Liver Physiol. 283: G827–32.

    PubMed  CAS  Google Scholar 

  104. de Souza RR, Moratelli HB, Borges N, Liberti EA (1993). Age-induced nerve cell loss in the myenteric plexus of the small intestine in man. Gerontology 39: 183–8.

    Article  PubMed  Google Scholar 

  105. Gomes OA, de Souza RR, Liberti EA (1997). A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology 43: 210–17.

    Article  PubMed  CAS  Google Scholar 

  106. Meciano Filho J, Carvalho VC, de Souza RR (1995). Nerve cell loss in the myenteric plexus of the human esophagus in relation to age: a preliminary investigation. Gerontology 41: 18–21.

    Article  PubMed  CAS  Google Scholar 

  107. Gabella G (1989). Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology 96: 1487–93.

    PubMed  CAS  Google Scholar 

  108. Johnson RJ, Schemann M, Santer RM, Cowen T (1998). The effects of age on the overall population and on sub-populations of myenteric neurons in the rat small intestine. JAnat. 192 (Pt 4): 479–88.

    Google Scholar 

  109. Santer RM, Baker DM (1988). Enteric neuron numbers and sizes in Auerbach’s plexus in the small and large intestine of adult and aged rats. JAuton Nerv Syst. 25: 59–67.

    Article  CAS  Google Scholar 

  110. El-Salhy M, Sandstrom O, Holmlund F (1999). Age-induced changes in the enteric nervous system in the mouse. Mech Ageing Dev. 107: 93–103.

    Article  PubMed  CAS  Google Scholar 

  111. Cowen T, Johnson RJ, Soubeyre V, Santer RM (2000). Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 47: 653–60.

    Article  PubMed  CAS  Google Scholar 

  112. Smith AD (2002). Homocysteine, B vitamins, and cognitive deficit in the elderly. Am J Clin Nutr. 75: 785–6.

    PubMed  CAS  Google Scholar 

  113. Calvaresi E, Bryan J (2001). B vitamins, cognition, and aging: a review. J Gerontol B Psychol Sci Soc Sci. 56: P327–39.

    Article  PubMed  CAS  Google Scholar 

  114. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002). Exercise, experience and the aging brain. Neurobiol Aging 23: 941–55.

    Article  PubMed  Google Scholar 

  115. Cotman CW, Berchtold NC (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25: 295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saffrey, M.J. (2003). Aging of the Nervous System. In: Aspinall, R. (eds) Aging of the Organs and Systems. Biology of Aging and Its Modulation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0673-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0673-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6486-8

  • Online ISBN: 978-94-017-0673-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics