Skip to main content

The p53 Pathway, Cancer and Aging

  • Chapter
Aging of Cells in and Outside the Body

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 2))

  • 132 Accesses

Abstract

The p53 tumor suppressor is one of the most intensely studied proteins in biomedical science. The reason for this is that mutations in the p53 gene itself, or defects in its regulation, are probably the most common genetic markers of all human cancers [1]. Despite the fact that tumor etiologies differ widely, this evidence shows that there are common pathways in tumor development. A key step in tumor development is the conversion of a cell from one with a limited lifespan to one that is immortalized and inactivation of p53 function appears to be an important part of this immortalization process. This immediately suggests that p53 may be important in the control of cellular senescence. Indeed, the evidence suggests that this is so, although there is clearly at least one other senescence pathway not involving p53 [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soussi T, Dehouche K, Beroud C (2000). p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat. 15: 105–113.

    Article  PubMed  CAS  Google Scholar 

  2. Wynford-Thomas D (1999). Celluar senescence and cancer. JPathol. 187: 100–111.

    Article  CAS  Google Scholar 

  3. Morris M, Hepburn P, Wynford -Thomas D (2002). Sequentialextension of proliferative lifespan in human fibroblasts induced by over-expression of CDK4 or 6 and loss of p53 function. Oncogene 21: 4277–4288.

    Article  PubMed  CAS  Google Scholar 

  4. Prives C, HallPA (1999). The p53 pathway. JPathol. 187: 112–126

    Article  CAS  Google Scholar 

  5. Vousden KH, Lu X (2002). Live or let die: the cell’s response to p53. Nat Rev Cancer 2: 594–604.

    Article  PubMed  CAS  Google Scholar 

  6. Appella E, Anderson CW (2001). Post-translationalmodifications and activation of p53 by genotoxic stresses. Eur JBiochem 268: 2764–2772.

    Article  CAS  Google Scholar 

  7. Itahana K, Dimri G, Campisi J (2001). Regulation of cellular senescence by p53. Eur J Biochem. 268: 2784–2791.

    Article  PubMed  CAS  Google Scholar 

  8. Marcotte R, Wang E (2002). Replicative senescence revisited. J Gerontol A Biol Sci Med Sci. 57: B257–269.

    Article  PubMed  Google Scholar 

  9. Sturzbecher H-W, Brain R, Addison C, et al. (1992). A C-terminala-helix plus basic region motif is the major structuraldeterminant of p53 tetramerization. Oncogene 7: 1513–1523.

    PubMed  CAS  Google Scholar 

  10. Foord O, Navot N, Rotter V (1993). Isolation and characterization of DNA sequences that are specifically bound by wild-type p53 protein. Mol Cell Biol. 13: 1378–1384.

    PubMed  CAS  Google Scholar 

  11. El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992). Definition of a consensus binding site for p53. Nat Genet. 1: 45–49.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao R, Gish K, Murphy M, et al. (2000). Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14: 981–993.

    Article  PubMed  CAS  Google Scholar 

  13. Ragimov N, Krauskopf A, Navot N, Rotter V, Oren M, Aloni Y (1993). Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basaltranscription factors to the TATA motif. Oncogene 8: 1183–1193.

    PubMed  CAS  Google Scholar 

  14. Perrem K, Rayner J, Voss T, Sturzbecher H, Jackson P, Braithwaite A (1995). p53 represses SV40 transcription by preventing formation of transcription complexes. Oncogene 11: 1299–1307.

    Google Scholar 

  15. Shikama N, Lee CW, France S, et al. (1999). A novelcofactor for p300 that regulates the p53 response. Mol Cell 4: 365–376.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang W, Kadam S, Emerson BM, Bieker JJ (2001). Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptionalactivity via its interaction with the SWI-SNF complex. Mol Cell Biol. 21: 2413–2422.

    Article  PubMed  CAS  Google Scholar 

  17. Deb S, Jackson CT, Subler MA, Martin DW (1992). Modulation of cellularand viralpromoters by mutant human p53 proteins found in tumor cells. J Virol. 66: 6164–6170.

    PubMed  CAS  Google Scholar 

  18. Ginsberg D, Mechta F, Yaniv M, Oren M (1991). Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 88: 9979–9983.

    Article  PubMed  CAS  Google Scholar 

  19. Jackson P, Bos E, Braithwaite AW (1993). Wild-type mouse p53 down-regulates transcription from different virus enhancer/promoters. Oncogene 8: 589–597.

    PubMed  CAS  Google Scholar 

  20. Murphy M, Ahn J, Walker KK, et al. (1999). Transcriptionalrepression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13: 2490–2501.

    Article  PubMed  CAS  Google Scholar 

  21. Ori A, Zauberman A, Doitsh G, Paran N, Oren M, Shaul Y (1998). p53 binds and represses the HBV enhancer: an adjacent enhancer element can reverse the transcription effect of p53. EMBO J. 17: 544–553.

    Google Scholar 

  22. El-Deiry W, Tokino T, Velculescu V, et al. (1993). WAF1, a potentialmediator of p53 tumour suppression. Cell 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  23. Harper W, Adami G, Wei N, Keyomarsi K, Elledge S (1993). The p21 CDK-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  PubMed  CAS  Google Scholar 

  24. Hermeking H, Lengauer C, Polyak K, et al. (1997). 14–3–3 sigma is a p53–regulated inhibitor of G2/M progression. Mol Cell 1: 3 – 11.

    Google Scholar 

  25. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999). 14–3–3sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616 – 620.

    Google Scholar 

  26. Miyashita T, Krajewski S, Krajewska M, et al. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.

    PubMed  CAS  Google Scholar 

  27. Moroni MC, Hickman ES, Denchi EL, et al. (2001). Apaf-1 is a transcriptionaltarget for E2F and p53. Nat Cell Biol. 3: 552–558.

    Article  PubMed  CAS  Google Scholar 

  28. Fortin A, Cregan SP, MacLaurin JG, et al. (2001). APAF1 is a key transcriptionaltarget for p53 in the regulation of neuronalcelldeath. JCell Biol. 155: 207–216.

    Article  CAS  Google Scholar 

  29. Robles AI, Bemmels NA, Foraker AB, Harris CC (2001). APAF-1 is a transcriptionaltarget of p53 in DNA damage-induced apoptosis. Cancer Res. 61: 6660–6664.

    PubMed  CAS  Google Scholar 

  30. Nakano K, Vousden KH (2001). PUMA, a novelproapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  PubMed  CAS  Google Scholar 

  31. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001). PUMA induces the rapid apoptosis of colorectalcancer cells. Mol Cell 7: 673–682.

    Article  PubMed  CAS  Google Scholar 

  32. Oda E, Ohki R, Murasawa H, et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  33. Oda K, Arakawa H, Tanaka T, et al. (2000). p53AIP1, a potentialmediator of p53- dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    Google Scholar 

  34. Chittenden T, Flemington C, Houghton AB, et al. (1995). A conserved domain in Bak, distinct from BH 1 and BH2, mediates celldeath and protein binding functions. EMBO J. 14: 5589–5596.

    PubMed  CAS  Google Scholar 

  35. Hunter JJ, Parslow TG (1996). A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J Biol Chem. 271: 8521–8524.

    Article  PubMed  CAS  Google Scholar 

  36. Antonsson B (2001). Bax and other pro-apoptotic Bcl-2 family “killer-proteins’’ and their victim the mitochondrion. Cell Tissue Res. 306: 347–361.

    Article  PubMed  CAS  Google Scholar 

  37. Selvakumaran M, Lin HK, Miyashita T, et al. (1994). Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798.

    PubMed  CAS  Google Scholar 

  38. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed celldeath. Cell 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang H, Heim J, Meyhack B (1998). Redistribution of Bax from cytosolto membranes is induced by apoptotic stimuli and is an early step in the apoptotic pathway. Biochem Biophys Res Commun. 251: 454–459.

    Article  PubMed  CAS  Google Scholar 

  40. Schuler M, Green DR (2001). Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 29: 684–688.

    Article  PubMed  CAS  Google Scholar 

  41. Chen X, Ko LJ, Jayaraman L, Prives C (1996). p53 Levels, functionaldomains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10: 2438–2451.

    Google Scholar 

  42. Friedlander P, Haupt Y, Prives C, Oren M (1996). A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol. 16: 4961–4971.

    PubMed  CAS  Google Scholar 

  43. Ludwig RL, Bates S, Vousden KH (1996). Differentialactivation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 16: 4952–4960.

    PubMed  CAS  Google Scholar 

  44. Kaeser MD, Iggo RD (2002). Chromatin immunoprecipitation analysis fails to support the latency modelfor regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99: 95–100.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu J, Zhang S, Jiang J, Chen X (2000). Definition of the p53 functionaldomains necessary for inducing apoptosis. J Biol Chem. 275: 39927–39934.

    Article  PubMed  CAS  Google Scholar 

  46. Edwards SJ, Hananeia L, Eccles MR, Zhang YF, Braithwaite AW (2003). The prolinerich region of mouse p53 influences transactivation and apoptosis but is largely dispensable for these functions. Oncogene l in press).

    Google Scholar 

  47. Gorina S and Pavletich NP (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274: 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  48. Samuels-Lev Y, O’Connor DJ, Bergamaschi D, et al. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8: 781–794.

    Article  PubMed  CAS  Google Scholar 

  49. Baptiste N, Friedlander P, Chen X, Prives C (2002). The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 21: 9–21.

    Article  PubMed  CAS  Google Scholar 

  50. Flores ER, Tsai KY, Crowley D, et al. (2002). p63 and p73 are required for p53- dependent apoptosis in response to DNA damage. Nature 416: 560–564.

    Google Scholar 

  51. Hamamori Y, Sartorelli V, Ogryzko V, et al. (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviraloncoprotein E1A. Cell 96: 405–413.

    Article  CAS  Google Scholar 

  52. Liu L, Scolnick DM, TrievelRC, et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 19: 1202–1209.

    Google Scholar 

  53. Scolnick DM, Chehab NH, Stavridi ES, et al. (1997). CREB-binding protein and p300/ CBP-associated factor are transcriptionalcoactivators of the p53 tumor suppressor protein. Cancer Res. 57: 3693–3696.

    PubMed  CAS  Google Scholar 

  54. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991). The PMLRAR a fusion mRNA generated by the tl15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684.

    Google Scholar 

  55. Pearson M, Pelicci PG (2001). PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 20: 7250–7256.

    Article  PubMed  CAS  Google Scholar 

  56. Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A (2002). Deconstructing PML-induced premature senescence. EMBO J. 21: 3358–3369.

    Article  PubMed  CAS  Google Scholar 

  57. Guo A, Salomoni P, Luo J, et al. (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2: 730–736.

    Article  PubMed  CAS  Google Scholar 

  58. FogalV, Gostissa M, Sandy P, et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 19: 6185–6195.

    Google Scholar 

  59. Pearson M, Carbone R, Sebastiani C, et al. (2000). PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406: 207–210.

    Article  PubMed  CAS  Google Scholar 

  60. Haupt Y, Rowan S, Shaulian E, Vousden K, Oren M (1995). Induction of apoptosis in Hela cells by trans-activation deficient p53. Genes Dev. 9: 2170–2183.

    Article  PubMed  CAS  Google Scholar 

  61. Hansen RS, Braithwaite AW (1996). The growth-inhibitory function of p53 is separable from transactivation, apoptosis and suppression of transformation by E1a and Ras. Oncogene 13: 995–1007.

    PubMed  CAS  Google Scholar 

  62. Marchenko ND, Zaika A, MollUM (2000). Death signal-induced localization of p53 protein to mitochondria. A potentialrole in apoptotic signaling. J Biol Chem. 275: 16202–16212.

    CAS  Google Scholar 

  63. Sansome C, Zaika A, Marchenko ND, MollUM (2001). Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488: 110–115.

    CAS  Google Scholar 

  64. MollUM, Zaika A (2001). Nuclearand mitochondrialapoptotic pathways of p53. FEBS Lett. 493: 65–69.

    Google Scholar 

  65. Momand J, Zambetti G, Olson D, George D, Levine A (1992). The Mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  66. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 275: 8945–8951.

    Article  PubMed  CAS  Google Scholar 

  67. Honda R, Yasuda H (2000). Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19: 1473–1476.

    Article  PubMed  CAS  Google Scholar 

  68. Joazeiro CAP, Weissman AW (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552.

    Article  PubMed  CAS  Google Scholar 

  69. Honda R, Tanaka H, Yasuda H (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420: 25–27.

    Article  PubMed  CAS  Google Scholar 

  70. Barak Y, Juven T, Haffner R, Oren M (1993). mdm2 expression is induced by wild type p53 activity. EMBO J. 12: 461–468.

    Google Scholar 

  71. Clarke AR, Purdie CA, Harrison DJ, etal. (1993). Thymocyte apoptosis induced by p53- dependent and independent pathways. Nature 362: 849–852.

    Article  PubMed  CAS  Google Scholar 

  72. Banin S, MoyalL, Shieh S, et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.

    Article  PubMed  CAS  Google Scholar 

  73. Canman CE, Lim DS, Cimprich KA, et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  PubMed  CAS  Google Scholar 

  74. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999). Phosphorylation of Ser20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96: 13777–13782.

    Article  PubMed  CAS  Google Scholar 

  75. Hirao A, Kong YY, Matsuoka S, et al. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287: 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  76. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000). The human homologs of checkpoint kinases Chk1 and Cds1 lChk2). phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14: 289–300.

    PubMed  CAS  Google Scholar 

  77. Lin J, Chen J, Elenbaas B, Levine AJ (1994). Severalhydrophobic amino acids in the p53 amino-terminaldomain are required for transcriptionalactivation, binding to Mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  78. Chen J, MarechalV, Levine A (1993). Mapping of the p53 and mdm-2 Interaction Domains. Mol Cell Biol. 13: 4107–4114.

    CAS  Google Scholar 

  79. Craig AL, Burch L, Vojtesek B, Mikutowska J, (1999). Thompson A, Hupp TR. Novelphosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 lmouse double minute 2) protein are modified in human cancers. Biochem J. 342: 133–141.

    Article  PubMed  CAS  Google Scholar 

  80. Bulavin DV, Saito S, Hollander MC, et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminalphosphorylation and apoptosis in response to UV radiation. EMBO J. 18: 6845–6854.

    Article  PubMed  CAS  Google Scholar 

  81. D’Orazi G, Cecchinelli B, Bruno T, et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 4: 11–19.

    Article  PubMed  CAS  Google Scholar 

  82. Hofmann TG, Moller A, Sirma H, et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 4: 1–10.

    Article  PubMed  CAS  Google Scholar 

  83. Buschmann T, Potapova O, Bar-Shira A, et al. (2001). Jun NH2-terminalkinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptionalactivities in response to stress. Mol Cell Biol. 21: 2743–2754.

    Article  PubMed  CAS  Google Scholar 

  84. Blaydes JP, Luciani MG, Pospisilova S, BallHM, Vojtesek B, Hupp TR (2001). Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J Biol Chem. 276: 4699–4708.

    CAS  Google Scholar 

  85. Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE (1999). The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18: 2690–2702.

    Article  PubMed  CAS  Google Scholar 

  86. Sakaguchi K, Herrera JE, Saito S, et al. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12: 2831–2841

    Article  PubMed  CAS  Google Scholar 

  87. Ito A, Lai CH, Zhao X, et al. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20: 1331–1340.

    Google Scholar 

  88. LillNL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM (1997). Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.

    Google Scholar 

  89. Chao C, Saito S, Anderson CW, Appella E, XuY (2000). Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97: 11936–11941.

    Article  CAS  Google Scholar 

  90. Dumaz N, Meek DW. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J (1999). 18: 7002–7010.

    Article  PubMed  CAS  Google Scholar 

  91. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998). Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem. 273: 33048–33053.

    Article  PubMed  CAS  Google Scholar 

  92. Li M, Chen D, Shiloh A, et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653.

    Article  PubMed  CAS  Google Scholar 

  93. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96: 14973–14977.

    Article  PubMed  CAS  Google Scholar 

  94. Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101: 753–762.

    Article  PubMed  CAS  Google Scholar 

  95. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cellcycle arrest. Cell 83: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  96. de Stanchina E, McCurrach ME, Zindy F, et al. (1998). E1A signaling to p53 involves the p19lARF) tumor suppressor. Genes Dev. 12: 2434–2442.

    Article  PubMed  Google Scholar 

  97. Bates S, Phillips AC, Clark PA, et al. (1998). p14A RF links the tumour suppressors Rb and p53. Nature 395: 124–125.

    Google Scholar 

  98. Honda R, Yasuda H (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18: 22–27.

    Article  PubMed  CAS  Google Scholar 

  99. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. (1998). The INK4a tumor suppressor gene product, p19A RF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723.

    Article  PubMed  CAS  Google Scholar 

  100. Kamijo T, Weber JD, Zambetti G, Zindy F, RousselMF, Sherr CJ (1998). Functionaland physicalinteractions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297.

    Article  CAS  Google Scholar 

  101. Stott FJ, Bates S, J Ames MC, et al. (1998). The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17: 5001–5014.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang Y, Xiong Y, Yarbrough WG (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

    Article  PubMed  CAS  Google Scholar 

  103. Edwards SJ, Dix BR, Myers CJ, et al. (2002). Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14ARF tumor suppressor genes. J Virol. 76: 12483–12490.

    Article  PubMed  CAS  Google Scholar 

  104. Tolbert D, Lu X, Yin C, Tantama M, Van Dyke T (2002). p19lARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol Cell Biol. 22: 370–377.

    Google Scholar 

  105. Dey D, DahlJ, Cho S, BenJ Amin TL (2002). Induction and bypass of p53 during productive infection by polyomavirus. J Virol. 76: 9526–9532.

    CAS  Google Scholar 

  106. Dutta A, Ruppert J, Aster J, Winchester E (1993). Inhibition of DNA replication factor RPA by p53. Nature 365: 79–82.

    Article  PubMed  CAS  Google Scholar 

  107. Maheswaran S, Englert C, Bennet P, Heinrich G, Haber D (1995). The WT1 gene product stabilises p53 and inhibits p53 mediated apoptosis. Genes Dev. 9: 2143–2156.

    Article  PubMed  CAS  Google Scholar 

  108. Zhang H, Somasundaram K, Peng Y, et al. (1998). BRCA1 physically associates with p53 and stimulates its transcriptionalactivity. Oncogene 16: 1713–1721.

    Article  PubMed  CAS  Google Scholar 

  109. Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW, Harris CC (1997). Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 25: 3868–3874.

    Article  PubMed  CAS  Google Scholar 

  110. Lu H, Fisher RP, Bailey P, Levine AJ (1997). The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol. 17: 5923–5934.

    PubMed  CAS  Google Scholar 

  111. Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, Prives C (1997). Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11: 558–570.

    Article  PubMed  CAS  Google Scholar 

  112. Okamoto T, Izumi H, Imamura T, et al. (2000). Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression. Oncogene 19: 6194–6202.

    Article  PubMed  CAS  Google Scholar 

  113. Hayflick L, Moorhead PS l1961). The limited in vitro lifetime of human diploid cellstrains. Exp Cell Res 25: 585–621.

    Google Scholar 

  114. Vaziri H (1997). Criticaltelomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signalleading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review. Biochemistry lMosc., 62: 1306–1310.

    CAS  Google Scholar 

  115. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN (1998). Molecular analysis of H2O2-induced senescent-like growth arrest in normalhuman fibroblasts: p53 and Rb controlG1 arrest but not cellreplication. Biochem J. 332: 43–50.

    PubMed  CAS  Google Scholar 

  116. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12: 3008–3019.

    Article  PubMed  CAS  Google Scholar 

  117. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997). Oncogenic Ras provokes premature cellsenescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  118. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW (2000). PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14: 2015–2027.

    PubMed  CAS  Google Scholar 

  119. Zhu J, Woods D, McMahon M, Bishop JM (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12: 2997–3007.

    Article  PubMed  CAS  Google Scholar 

  120. Griffith JD, Comeau L, Rosenfield S, et al. (1999). Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    Article  PubMed  CAS  Google Scholar 

  121. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999). p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283: 1321–1325.

    Google Scholar 

  122. Zhu XD, Kuster B, Mann M, Petrini JH, Lange T (2000). Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet. 25: 347–352.

    Article  PubMed  CAS  Google Scholar 

  123. Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999). Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96: 12454–1258.

    Article  PubMed  CAS  Google Scholar 

  124. Hsu HL, Gilley D, Galande SA, et al. (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14: 2807–2812.

    Article  PubMed  CAS  Google Scholar 

  125. Donehower L, Harvey M, Slagle B, et al. (1992). Mice deficient for p53 are developmentally normalbut susceptable to spontaneous tumours. Nature 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  126. Gao Q, Hauser SH, Liu XL, Wazer DE, Madoc-Jones H, Band V (1996). Mutant p53- induced immortalization of primary human mammary epithelialcells. Cancer Res. 56: 3129–3133.

    PubMed  CAS  Google Scholar 

  127. Wazer DE, Chu Q, Liu XL, Gao Q, Safaii H, Band V (1994). Loss of p53 protein during radiation transformation of primary human mammary epithelialcells. Mol Cell Biol. 14: 2468–2478.

    Article  PubMed  CAS  Google Scholar 

  128. Vousden KH, Vojtesek B, Fisher C, Lane D (1993). HPV-16 E7 or adenovirus E1A can overcome the growth arrest of cells immortalized with a temperature-sensitive p53. Oncogene 8: 1697–1702.

    PubMed  CAS  Google Scholar 

  129. Nevins JR (1994). Cellcycle targets of the DNA tumor viruses. Curr Opin Genet Dev. 4: 130–134.

    Article  PubMed  CAS  Google Scholar 

  130. Bryan TM, ReddelRR (1994). SV40-induced immortalization of human cells. Crit Rev Oncog. 5: 331–357.

    Article  CAS  Google Scholar 

  131. Saenz-Robles MT, Sullivan CS, Pipas JM (2001). Transforming functions of Simian Virus 40. Oncogene 20: 7899–7907.

    Article  PubMed  CAS  Google Scholar 

  132. Mantovani F, Banks L (2001). The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20: 7874–1887.

    Article  PubMed  CAS  Google Scholar 

  133. Whitaker NJ, Bryan TM, Bonnefin P, et al. (1995). Involvement of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. Oncogene 11: 971–976.

    PubMed  CAS  Google Scholar 

  134. Huschtscha LI, Noble JR, Neumann AA, et al. (1998). Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelialcells. Cancer Res. 58: 3508–3512.

    PubMed  CAS  Google Scholar 

  135. Rogan EM, Bryan TM, Hukku B, et al. (1995). Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol Cell Biol. 15: 4745–4753.

    PubMed  CAS  Google Scholar 

  136. Bodnar AG, Ouellette M, Frolkis M, et al. (1998). Extension of life-span by introduction of telomerase into normalhuman cells. Science 279: 349–352.

    Article  PubMed  CAS  Google Scholar 

  137. ReddelRR, Bryan TM, Colgin LM, Perrem KT, Yeager TR (2001). Alternative lengthening of telomeres in human cells. Radiat Res. 155: 194–200.

    Google Scholar 

  138. Gire V, Wynford -Thomas D (1998). Reinitiation of DNA synthesis and celldivision in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol. 18: 1611–1621.

    PubMed  CAS  Google Scholar 

  139. Bond JA, Wyllie FS, Wynford-Thomas D (1994). Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9: 1885–1889.

    PubMed  CAS  Google Scholar 

  140. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98.

    Article  PubMed  CAS  Google Scholar 

  141. Atadja P, Wong H, Garkavtsev I, Veillette C, RiabowolK (1995). Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 92: 8348–8352.

    Article  CAS  Google Scholar 

  142. Bond J, Haughton M, Blaydes J, Gire V, Wynford -Thomas D, Wyllie F (1996). Evidence that transcriptionalactivation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13: 2097–2104.

    PubMed  CAS  Google Scholar 

  143. Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997). Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functionalp53. Proc Natl Acad Sci USA 94: 9648–9653.

    Article  PubMed  CAS  Google Scholar 

  144. Afshari CA, Vojta PJ, Annab LA, FutrealPA, Willard TB, Barrett JC (1993). Investigation of the role of G1 /S cellcycle mediators in cellular senescence. Exp Cell Res 209: 231–237.

    CAS  Google Scholar 

  145. Vaziri H, West MD, Allsopp RC, et al. (1997). ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translationalactivation of p53 protein involving polylADP-ribose) polymerase. EMBO J. 16: 6018–6033.

    Article  PubMed  CAS  Google Scholar 

  146. Kulju KS, Lehman JM (1995). Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217: 336–345.

    Article  PubMed  CAS  Google Scholar 

  147. Langley E, Pearson M, Faretta M, et al. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21: 2383–2396.

    Article  PubMed  CAS  Google Scholar 

  148. Wang Y, Blandino G, GivolD (1999). Induced p21WAF expression in H1299 cellline promotes cellsenescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18: 2643–2649.

    CAS  Google Scholar 

  149. Fang L, Igarashi M, Leung J, Sugrue MM, Lee SW, Aaronson SA (1999). p21Waf1/ Cip1 /Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functionalp53. Oncogene 18: 2789–2797.

    Google Scholar 

  150. Brown JP, Wei W, Sedivy JM (1997). Bypass of senescence after disruption of p21CIP1/WAF1 gene in normaldiploid human fibroblasts. Science 277: 831–834.

    Article  PubMed  CAS  Google Scholar 

  151. Ma Y, Prigent SA, Born TL, MonellCR, Feramisco JR, Bertolaet BL (1999). Microinjection of anti-p21 antibodies induces senescent Hs68 human fibroblasts to synthesize DNA but not to divide. Cancer Res. 59: 5341–5348.

    PubMed  CAS  Google Scholar 

  152. Medcalf AS, Klein-Szanto AJ, Cristofalo VJ (1996). Expression of p21 is not required for senescence of human fibroblasts. Cancer Res. 56: 4582–4585.

    PubMed  CAS  Google Scholar 

  153. Pantoja C, Serrano M (1999). Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18: 4974–4982.

    Article  PubMed  CAS  Google Scholar 

  154. Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D (1998). Involvement of p53 and p21 in cellular defects and tumorigenesis in Atmmice. Mol Cell Biol. 18: 4385–4390.

    PubMed  CAS  Google Scholar 

  155. Garkavtsev I, RiabowolK (1997). Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol. 17: 2014–2019.

    CAS  Google Scholar 

  156. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV (1998). The candidate tumour suppressor p33ING1 cooperates with p53 in cellgrowth control. Nature 391: 295–298.

    Article  PubMed  CAS  Google Scholar 

  157. Cheung KJ, Jr., MitchellD, Lin P, Li G (2001). The tumor suppressor candidate p33lING1) mediates repair of UV-damaged DNA. Cancer Res. 61: 4974–4977.

    PubMed  CAS  Google Scholar 

  158. Volonte D, Zhang K, Lisanti MP, Galbiati F (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13: 2502–2517.

    Article  PubMed  CAS  Google Scholar 

  159. Koleske AJ, Baltimore D, Lisanti MP (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92: 1381–1385.

    Article  PubMed  CAS  Google Scholar 

  160. Engelman JA, Lee RJ, Karnezis A, et al. (1998). Reciprocalregulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J Biol Chem. 273: 20448–10455.

    Article  PubMed  CAS  Google Scholar 

  161. Galbiati F, Volonte D, Liu J, et al. (2001). Caveolin-1 expression negatively regulates cellcycle progression by inducing Gl0)/Gl1) arrest via a p53/p21lWAF1 /Cip1)-dependent mechanism. Mol Biol Cell 12: 2229–2244.

    Article  PubMed  CAS  Google Scholar 

  162. Roninson IB (2002). Oncogenic functions of tumour suppressor p21lWaf1/Cip1/Sdi1): association with cellsenescence and tumour-promoting activities of stromalfibroblasts. Cancer Lett. 179: 1–14.

    Article  PubMed  CAS  Google Scholar 

  163. Di Leonardo A, Linke SP, Clarkin K, WahlGM (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normalhuman fibroblasts. Genes Dev. 8: 2540–2551.

    Google Scholar 

  164. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996). Involvement of the cyclin-dependent kinase inhibitor p16 lINK4a) in replicative senescence of normalhuman fibroblasts. Proc Natl Acad Sci USA 93: 13742–13747.

    Article  PubMed  CAS  Google Scholar 

  165. Donehower LA (2002). Does p53 affect organismalaging? J Cell Physiol. 192: 23–33.

    Article  PubMed  CAS  Google Scholar 

  166. Schneider EL, Mitsui Y l1976). The relationship between in vitro cellularaging and in vivo human age. Proc Natl Acad Sci USA 73: 3584–3588.

    Google Scholar 

  167. Martin GM, Sprague CA, Epstein CJ l1970). Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest. 23: 86–92.

    Google Scholar 

  168. Norwood TH, Hoehn H, Salk D, Martin GM l1979). Cellularaging in Werner’s syndrome: a unique phenotype? JInvest Dermatol. 73: 92–96.

    Google Scholar 

  169. Choi D, Whittier PS, Oshima J, Funk WD (2001). Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cellstrains. FASEB J. 15: 1014–1020.

    Article  PubMed  CAS  Google Scholar 

  170. Yu CE, Oshima J, Fu YH, et al. (1996). Positionalcloning of the Werner’s syndrome gene. Science 272: 258–262.

    Article  PubMed  CAS  Google Scholar 

  171. Gray MD, Shen JC, Kamath-Loeb AS, et al. (1997). The Werner syndrome protein is a DNA helicase. Nat Genet. 17: 100–103.

    Article  PubMed  CAS  Google Scholar 

  172. Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998). The premature ageing syndrome protein, WRN, is a 3’-5’ exonuclease. Nat Genet. 20: 114–116.

    Article  PubMed  CAS  Google Scholar 

  173. LebelM, Spillare EA, Harris CC, Leder P (1999). The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem. 274: 37795–37799.

    Google Scholar 

  174. Blander G, Kipnis J, LealJF, Yu CE, Schellenberg GD, Oren M (1999). Physicaland functionalinteraction between p53 and the Werner’s syndrome protein. J Biol Chem. 274: 29463–29469.

    CAS  Google Scholar 

  175. Spillare EA, Robles AI, Wang XW, et al. (1999). p53-mediated apoptosis is attenuated in Werner syndrome cells.Genes Dev. 13: 1355–1360.

    Google Scholar 

  176. Brosh RM, Jr., Karmakar P, Sommers JA, et al. (2001). p53 Modulates the exonuclease activity of Werner syndrome protein. J Biol Chem. 276: 35093–35102.

    Google Scholar 

  177. Wilmut I, Schnieke AE, McWhir J, Kind AJ, CampbellKH (1997). Viable offspring derived from fetaland adult mammalian cells. Nature 385: 810–813.

    CAS  Google Scholar 

  178. Shiels PG, Kind AJ, CampbellKH, et al. (1999). Analysis of telomere lengths in cloned sheep. Nature 399: 316–317.

    Article  PubMed  CAS  Google Scholar 

  179. Blasco MA, Lee HW, Hande MP, et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Article  PubMed  CAS  Google Scholar 

  180. Rudolph KL, Chang S, Lee HW, et al. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712.

    Article  PubMed  CAS  Google Scholar 

  181. Chin L, Artandi SE, Shen Q, et al. (1999). p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–538.

    Google Scholar 

  182. VogelH, Lim DS, Karsenty G, Finegold M, Hasty P (1999). Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 96: 10770–10775.

    Google Scholar 

  183. Lim DS, VogelH, Willerford DM, Sands AT, Platt KA, Hasty P (2000). Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol Cell Biol. 20: 3772–3780.

    Article  PubMed  CAS  Google Scholar 

  184. Migliaccio E, Giorgio M, Mele S, et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402: 309–313

    Article  PubMed  CAS  Google Scholar 

  185. Tyner SD, Venkatachalam S, Choi J, et al. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.

    Google Scholar 

  186. Campisi J (1997). Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc. 45: 482–488.

    PubMed  CAS  Google Scholar 

  187. Wu X, Bayle JH, Olson D, Levine AJ (1993). The p53-MDM-2 autoregulatory feedback loop. Genes Dev. 7: 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  188. Kastan MB, Zhan Q, El-Deiry WS, et al. (1992). A mammalian cellcycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.

    Article  PubMed  CAS  Google Scholar 

  189. Zauberman A, Lupo A, Oren M (1995). Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding site. Oncogene 10: 2361–2366.

    PubMed  CAS  Google Scholar 

  190. Okamoto K, Beach D. Cyclin G is a transcriptionaltarget of the p53 tumor suppressor protein. EMBO J (1994). 13: 4816–4822.

    PubMed  CAS  Google Scholar 

  191. Buckbinder L, Talbott R, Velasco-MiguelS, et al. (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 646–649.

    Article  PubMed  CAS  Google Scholar 

  192. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A modelfor p53-induced apoptosis. Nature (1997). 389: 300–305.

    Article  PubMed  CAS  Google Scholar 

  193. Wu GS, Burns TF, McDonald ER, et al. (1997). KILLER/DR5 is a DNA damageinducible p53-regulated death receptor gene. Nat Genet. 17: 141–143.

    Article  PubMed  CAS  Google Scholar 

  194. Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994). Controlof angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  195. Owen-Schaub LB, Zhang W, Cusack JC, et al. (1995). Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol. 15: 3032–3040.

    PubMed  CAS  Google Scholar 

  196. Wu GS, Saftig P, Peters C, El-Deiry WS (1998). Potentialrole for cathepsin D in p53- dependent tumor suppression and chemosensitivity. Oncogene 16: 2177–2183.

    Article  PubMed  CAS  Google Scholar 

  197. Hwang PM, Bunz F, Yu J, et al. (2001). Ferredoxin reductase affects p53-dependent, 5- fluorouracil-induced apoptosis in colorectalcancer cells. Nat Med. 7: 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  198. Okamura S, Arakawa H, Tanaka T, et al. (2001). p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 8: 85–94.

    Google Scholar 

  199. Attardi LD, Reczek EE, Cosmas C, et al. (2000). PERP, an apoptosis-associated target of p53, is a novelmember of the PMP-22/gas3 family. Genes Dev. 14: 704–718.

    PubMed  CAS  Google Scholar 

  200. Lin Y, Ma W, BenchimolS (2000). Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet, 26: 122–127.

    CAS  Google Scholar 

  201. Stambolic V, MacPherson D, Sas D, et al. (2001). Regulation of PTEN transcription by p53. Mol Cell 8: 317–325.

    Article  PubMed  CAS  Google Scholar 

  202. Fiscella M, Zhang H, Fan S, et al. (1997). Wip1, a novelhuman protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94: 6048–6053.

    Article  PubMed  CAS  Google Scholar 

  203. Rouault JP, Falette N, Guehenneux F, et al. (1996). Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 14: 482–486.

    Article  PubMed  CAS  Google Scholar 

  204. Nakano K, Balint E, Ashcroft M, Vousden KH. A ribonucleotide reductase gene is a transcriptionaltarget of p53 and p73. Oncogene (2000). 19: 4283–4289.

    Article  PubMed  CAS  Google Scholar 

  205. Tanaka H, Arakawa H, Yamaguchi T, et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature (2000). 404: 42–49.

    Article  PubMed  CAS  Google Scholar 

  206. Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK (1994). Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet. 8: 171–176.

    Article  PubMed  Google Scholar 

  207. Nishimori H, Shiratsuchi T, Urano T, et al. (1997). A novelbrain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimentalangiogenesis. Oncogene 15: 2145–2150.

    Article  PubMed  CAS  Google Scholar 

  208. Bian J, Sun Y (1997). Transcriptionalactivation by p53 of the human type IV collagenase lgelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol. 17: 6330–6338.

    PubMed  CAS  Google Scholar 

  209. Zou Z, Gao C, Nagaich AK, et al. (2000). p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem. 275: 6051–6054.

    Google Scholar 

  210. Mashimo T, Watabe M, Hirota S, et al. (1998). The expression of the KAI 1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc Natl Acad Sci USA 95: 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  211. Chen X, Zheng Y, Zhu J, Jiang J, Wang J (2001). p73 is transcriptionally regulated by DNA damage, p53, and p73. Oncogene 20: 769–774.

    Google Scholar 

  212. Jackson P, Ridgway P, Rayner J, Noble J, Braithwaite A (1994). Transcriptionalregulation of the PCNA promoter by p53. Biochem Biophys Res Commun. 203: 133–140.

    Article  PubMed  CAS  Google Scholar 

  213. Murphy M, Hinman A, Levine AJ (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10: 2971–2980.

    Article  PubMed  CAS  Google Scholar 

  214. Roperch JP, Alvaro V, Prieur S, et al. (1998). Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med. 4: 835–838.

    Article  PubMed  CAS  Google Scholar 

  215. Mukhopadhyay D, Tsiokas L, Sukhatme VP (1995). Wild-type p53 and v-Src exert opposing influences on human vascular endothelialgrowth factor gene expression. Cancer Res. 55: 6161–6165.

    PubMed  CAS  Google Scholar 

  216. Miyashita T, Harigai M, Hanada M, Reed J (1994). Identification of a p53-dependent negative response element in the Bcl-2 gene. Cancer Res. 54: 3131–3135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braithwaite, A.W., Edwards, S.J. (2003). The p53 Pathway, Cancer and Aging. In: Kaul, S.C., Wadhwa, R. (eds) Aging of Cells in and Outside the Body. Biology of Aging and its Modulation, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0669-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0669-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6314-4

  • Online ISBN: 978-94-017-0669-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics