Advertisement

Choice from Comparisons: A Survey of Game-Theoretical Methods

  • Jean-François Laslier
Part of the Mathematical Modelling: Theory and Applications book series (MMTA, volume 4)

Abstract

We survey several choice correspondences defined for pairwise comparison structures and their relation with the game-theoretical concepts of weak dominance, weak saddle and optimal mixed strategies. These correspondences are the Uncovered set, the Minimal Covering set and the Essential set. We notice that the Uncovered set and the Minimal Covering set make use of ordinal information at the level of the comparison structure. The Essential set uses cardinal comparisons, but it is possible to indirectly define an « Ordinal Essential set ».

Keywords

Social Choice Condorcet Winner Weak Dominance Borda Rule Borda Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Donder, Ph., M. Le Breton and M. Truchon (1997) « Choosing from a weighted tournament », mimeo, GREBE, Facultés Universitaires Notre-Dame de la Paix, Namur.Google Scholar
  2. Duggan, J. and M. Le Breton (1996) « Dutta’s minimal covering set and Shapley’s weak saddles », Journal of Economic Theory 70: 257–265.MathSciNetCrossRefGoogle Scholar
  3. Dutta, B. (1998) « Covering sets and a new Condorcet choice correspondence », Journal of Economic Theory 44: 63–80.CrossRefGoogle Scholar
  4. Dutta, B. and J-F. Laslier (1998) « Comparison functions and choice correspondences «, Social Choice and Welfare,forthcoming.Google Scholar
  5. Fishburn, P.C. (1977) « Condorcet social choice functions », SIAM Journal of Applied Mathematics 33: 469–489.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Fisher, D. and J. Ryan (1992) « Optimal strategies for a generalized ‘Scissor, Paper and Stone’ game », American Mathematical Monthly 99: 935–942.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Kramer, G. (1977) A dynamical model of political equilibrium, Journal of Economic Theory 16: 310–334.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Laffond, G., J. Lainé and J-F. Laslier (1994) « On regular composed tournaments », in B. Munier and M. Machine (eds.) Models and Experiments in Risk and Rationality,Kluwer, pp. 359–376.Google Scholar
  9. Laffond, G., J-F. Laslier and M. Le Breton (1993) «The Bipartisan set of a tournament game », Games and Economic Behavior 5: 182–201.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Laffond, G., J-F. Laslier and M. Le Breton (1994) « Social Choice mediators », American Economic Review (proc.) 84: 448–453.Google Scholar
  11. Laffond, G., J-F. Laslier and M. Le Breton (1995) « Condorcet choice correspondences: A set-theoretical comparison », Mathematical Social Sciences 30: 23–35.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Laffond, G., J-F. Laslier and M. Le Breton (1997) « A theorem on symmetric zero-sum games », Journal of Economic Theory 72: 426–431.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Laslier, J-F. (1996) « Aggregation of preferences with a variable set of alternatives », working paper,University of Cergy-Pontoise.Google Scholar
  14. Laslier, J-F. (1997) Tournament Solutions and Majority Voting, Berlin: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  15. McKelvey, R. (1986) « Covering, dominance and institution-free properties of Social Choice », American Journal of Political Science 30: 283–314.CrossRefGoogle Scholar
  16. Miller, N. (1980) A new solution set for tournaments and majority voting: further graph-theoretical approaches to the theory of voting American Journal of Political Science 24:68–96.CrossRefGoogle Scholar
  17. Moulin, H. (1986) « Choosing from a tournament », Social Choice and Welfare 3: 271–291.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Peris, J.E. and B. Subiza (1998) « Condorcet choice correspondences for weak tournaments », Social Choice and Welfare,forthcoming.Google Scholar
  19. Shapley, L. (1964) « Some topics in two-person games », in M. Dresher, L. Shapley and A. Tucker (eds.) Advances in Game Theory,Annals of Mathematical Studies 52, Princeton University Press, pp. 1–28.Google Scholar
  20. Simpson, P. (1969) « On defining areas of voter choice: Professor Tullock on stable voting », Quarterly Journal of Economics 83: 478–490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Jean-François Laslier
    • 1
  1. 1.Université de Cergy-PontoiseCNRS, THEMACergy-PontoiseFrance

Personalised recommendations