Microbial Physiology Applied to Process Optimisation: Lactic Acid Bacteria



The study of the interactions between the microorganism and its environment is what is usually recognised as microbial physiology. The environment of a microorganism can be the ecological niche where it is present in nature or the conditions under which it is cultivated in the laboratory or in an industrial installation. As the occurrence of a microbiological product is also the resultant of the interaction between the microorganism and its environment, we can see that production and microbial physiology are closely related or are the same thing. This fact is, in many occasions, overlooked by some microbiologists, who had been carried away by the advances in microbial genetics and molecular biology and by engineers who lack training in Biology, using microbiological systems for process development and applications. For example, waste water treatment, which for the engineers is a process of water purification involving a series of unitary operations, from the standpoint of microbial physiology, the process is one of biomass and product formation using the contents of the wastewater as substrate (Speece, 1994). The result of properly taking into account the needs of the microbiota involved in the process, is an efficient system of waste water treatment. The same principle can be applied to any biotechnological process involving microorganims. Lactic Acid Bacteria (LAB) have an increased interest, not only for traditional uses in food preservation (Stiles, 1996), but as probiotics (Salminen et al.,1996) and for the production of biodegradable plastics (Lipinski, E.S., 1981) of medical interest; for this last purpose, pure isomers are required.


Lactic Acid Lactic Acid Bacterium Dilution Rate Chemostat Culture Lactobacillus Casei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler-Nissen, J. and Demain, A. L. (1994) Aeration-controlled formation of acetic acid in fermentations. J. Ind. Microbiol. 13, 335 - 343.CrossRefGoogle Scholar
  2. Aeschlimann, A., Di Stasi and, L. and Von Stockar, V. (1990) Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in two chemostats in series. Enzyme Microb. Technol. 12, 926 - 932.Google Scholar
  3. Antier, P., Moulin, G. and Galzy, P. (1990) Influence of composition of the culture medium on the behaviour of Kluyveromices fragilis in chemostat culture. Process. Biochem. 2, 9 - 12.Google Scholar
  4. Bryan B.A., Linhardt, R.J. and Daniels, L. (1986) Variation in composition and yield exopolisaccharides produced by klebsiella sp strain K32 and Acinetobacter calcoaceticus BD4. Appl. Env. Microbiol. 51, 1304 - 1308.Google Scholar
  5. Cerning, J. (1994) Polysaccharides exocelulaires produits por les bacteries lactiques. in H. Roissart et F.M. Luquet (eds.), Bacteries lactiques, Lorica, France pp. 309 - 329.Google Scholar
  6. De Man, J.C., Rogosa, M. and Sharpe, M.E. (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23, 30 - 135.Google Scholar
  7. De Vries, W., Kapteijn, W.M.C., Van der Veek, E.G. and Stouthamer, A.H. (1970) Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J. Gen. Microbiol. 63, 333 - 345.Google Scholar
  8. Dykhuizen, D.E. and Hartl, D.L. (1983) Selection in chemostats. Microbiol. Rev. 47, 150 - 168.Google Scholar
  9. Evans, C.G.T., Yeo, R.G. and Ellwood, D.C. (1979) Continuous culture studies on the production of extracellular polysaccharides by Xantomonas juglandis, in R.C.W. Berkeley, G.W. Gooday, and D.C. Ellwood (eds.), Microbial polysaccharides and polysaccharidases. Academic press, Inc, New York. Pp 51 - 58.Google Scholar
  10. Font de Valdez, G.F., Ragout, A., Bruno-Bârcena, J.M., Diekmann, H. and Sineriz, F. (1997) Shifts in pH affects the maltose/glycerol cofermentation by Lactobacillus reuteri. Biotech. Letters. in press.Google Scholar
  11. Guoquiang, D., Kaul, R.and Mattiasson, B. (1991) Evaluation of alginate-inmovilized Lactobacillus casei for lactate production. Appl. Microbiol. Biothechol. 36, 306 - 314.Google Scholar
  12. Jarry, A. (1994) Production industrelle Dacide lactique. in H. Roissart et F.M. Luquet (eds.). Bacteries lactiques, Lorica, France pp. 519 - 525.Google Scholar
  13. Kojima, M., Suda, S., Hotta, S. and Hamada, K. (1970) Induction of pleomorphy and calcium ion deficiency in Lactobacillus bifidus. J. Bacteriol. 102, 217 - 220.Google Scholar
  14. Kojima, M., Suda, S., Hotta, S., Hamada, K., and Sugamuda, A. (1970) Necessity of calcium ion for cell division in Lactobacillus bifidus. J. Bacteriol. 104, 1110 - 1113.Google Scholar
  15. Kuhn, H., Friederich, U. and Fiechter, A. (1979) Defined minimal medium for a thermophilic Bacillus sp. developed by a chemostat pulse and shift technique. Eur. J. Appl. Microbiol. Biotechnol. 6, 341 - 349.CrossRefGoogle Scholar
  16. Lipinsky, E. S. (1981) Chemicals from biomass: Petrochemical substitution options. Science, 212, 1465 - 1471.CrossRefGoogle Scholar
  17. Mateles, R.Y. and Battat, E. (1974) Continuous culture used for media optimization. Appl. Microbiol. 28, 901 - 905.Google Scholar
  18. Mäyrä-Mäkinen, A. and Bigret, M. (1993) Industrial use and production of lactic acid bacteria, in S. Salminen and A. von Wright (eds.), Lactic Acid Bacteria, Marcel Dekker, New York, pp. 65 - 95.Google Scholar
  19. Nikaido, H. and Nakae, T. (1980) The outer membrane of gram-negative bacteria. Adv. Microb. Physiol. 20, 163 - 250.CrossRefGoogle Scholar
  20. Pavlova, I.S., Miteva, V.I., Mihailova, L.I., Radoevska, S.A. and Stefanova, T.Tz. (1993) Effect of medium composition on the ultraestructure of Lactobacillus strains. Arch. Microbiol. 160, 132 - 136.CrossRefGoogle Scholar
  21. Pirt, S.J. and Callow (1960) Studies of the growth of Penicillium chrysogenum in continuous flow culture with reference to penicillin production. J. Appl. Bacteriol. 23, 87 - 98.CrossRefGoogle Scholar
  22. Ragout, A. and Sineriz, F. (1994) Influence of dilution rate on the morphology and technological properties of Lactobacillus delbrueckii subsp. bulgaricus. Appl. Microbiol. Biotechnol. 41, 461 - 464.Google Scholar
  23. Ragout, A., Cordoba, P.R., Bruno Barcena, J.M., Kaul, R., Mattiasson, B. and Sineriz, F. (1997) Continuous lactic acid fermentation in a packed bed reactor by a selected adhesive phenotype of Lactobacillus casei subsp. rhamnosus. J. Ferm. Boieng. in press.Google Scholar
  24. Ragout, A., F. Sineriz, Diekmann, H., and Font de Valdez, G. (1996) Shifts in the fermentation balance of Lactobacillus reuteri in the presence of glycerol. Biotechnol. Letters 18, 1105 - 1108.CrossRefGoogle Scholar
  25. Ragout, A., Sineriz, F., Diekmann, H. and Font de Valdez, G. (1994) Effect of environmental pH on the fermentation balance of Lactobacillus reuteri. J. Appl. Bacteriol. 77, 388 - 391.CrossRefGoogle Scholar
  26. Ragout, A., Sineriz, F., Kaul, R., Guoqiang, D. and Mattiasson, B. (1996) Selection of an adhesive phenotype of Streptococcus salivarius subsp. thermophilus for use in fixed-bed reactors. Appl. Microbiol. Biotechnol. 46, 126 - 131.CrossRefGoogle Scholar
  27. Raibaud, P., Caulet, M., Galpin, J.V. and Mocquot, G. (1961) Studies on the bacterial flora of the alimentary tract of pigs. II Streptococci: selective enumeration and differentiation of the dominant groups. J. Appl. Bacteriol. 24, 285 - 291.CrossRefGoogle Scholar
  28. Salminen, S., Isolauri, E. and Salminen, E. (1996) Clinical usesof probiotics for stabilizing the gut mucosal barrier: succesful strains and future chalenges, in G. Venema, J.H.J. Huis in `t Veld and J. Hugenholtz (eds.), Lactic Acid Bacteria: Genetics, Metabolism and Applications, Kluwer Academic Publishers, Dordrecht, pp. 251 - 262.Google Scholar
  29. Speece, R.E. (1994) Trace Metals: Key role in anerobic treatment process, in M. Vinas, L. Borzacconi, M. Soubes and L. Muxi (eds.), Tratamiento Anaerobico, Universidad de la Republica, Montevideo, Uruguay, pp. 65 - 82.Google Scholar
  30. Stiles, M.E. (1996) Biopreservation by lactic acid bacteria, in G. Venema, J.H.J. Huis in `t Veld and J. Hugenholtz (eds.), Lactic Acid Bacteria: Genetics, Metabolism and Applications, Kluwer Academic Publishers, Dordrecht, pp. 235 - 249.Google Scholar
  31. Sutherland, I. (1977) Bacterial exopolysaccharides-their nature and production. in I. Sutherland (ed.), Surface carbohydrates of the prokaryotic cell., Academic Press Inc., New York, pp. 27 - 96.Google Scholar
  32. Terzaghi, B.E. and Sandine, W.E. (1975) Improved media for lactic streptococci and their bacteriophages. Appl. Microbiol. 29, 807 - 814.Google Scholar
  33. Watanabe, K., Fukuzaki, T., Shirabe, M., Nakashima, Y., Murata, K. and Kuroiwa, A. (1990) Electron microscopy studies on the intracellular growth of PL-1 phage of Lactobacillus casei. Microbiol. Immunol. 34, 471 - 475.Google Scholar
  34. Wicken A.J., Ayres, A., Campbell, L.K. and Knox, K.W. (1983) Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus. J. Bacteriol. 153, 84 - 92.Google Scholar
  35. Wright, C.T. and Klaenhammer, T. R. (1983) Influence of calcium and manganese on dechaining of Lactobacillus bulgaricus. Appl. Environ. Microbiol. 46, 785 - 792.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Belgrano y CaserosPROIMI — MIRCEN — UNTTucumánArgentina

Personalised recommendations