Skip to main content

Non-Markovian Quantum Dissipation in the Presence of External Fields

  • Conference paper
Advanced Topics in Theoretical Chemical Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 12))

Abstract

This article reviews from both theoretical and numerical aspects three non-equivalent complete second-order formulations of quantum dissipation theory, in which both the reduced dynamics and the initial canonical thermal equilibrium are properly treated in the weak system-bath coupling limit. Two of these formulations are rather familiar as the time-local and the memory-kernel prescriptions, while another which can be termed as correlated driving-dissipation equations of motion will be shown to have the combined merits of the two conventional formulations. By exploiting the exact solutions to the driven Brownian oscillator system, we demonstrate that the time-local and correlated driving-dissipation equations of motion formulations are usually better than their memory-kernel counterparts, in terms of their applicability to a broad range of system-bath coupling, non-Markovian, and temperature parameters. Numerical algorithms are detailed for an efficient evaluation of both the reduced canonical thermal equilibrium state and the non-Markovian evolution at any temperature, in the presence of arbitrary time-dependent external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wangsness, E. K. and Bloch, F. Phys. Rev. 1953, 89, 728.

    Article  CAS  Google Scholar 

  2. Bloch, F. Phys. Rev. 1957, 105, 1206.

    Article  CAS  Google Scholar 

  3. Redfield, A. G. Adv. Magn. Reson. 1965, 1, 1.

    Article  Google Scholar 

  4. Feynman, R. P. and F. L. Vernon, J. Ann. Phys. (N. Y.) 1963, 24, 118.

    Article  Google Scholar 

  5. Nakajima, S. Prog. Theor. Phys. 1958, 20, 948.

    Article  Google Scholar 

  6. Zwanzig, R. W. J. Chem. Phys. 1960, 33, 423.

    Article  Google Scholar 

  7. Zwanzig, R. W. Statistical Mechanics of Irreversibility: Lectures in Theoretical Physics’, Wiley: New York, 1961 Vol. Ill,,.

    Google Scholar 

  8. Zwanzig, R. W. Annu. Rev. Phys. Chem. 1965, 16, 67.

    Article  CAS  Google Scholar 

  9. Mori, H. Prog. Theor. Phys. 1965, 33, 423.

    Article  Google Scholar 

  10. Fano, U. Phys. Rev. 1963, 131, 259.

    Article  Google Scholar 

  11. Berne, B. J. In Physical Chemistry, An Advanced Treatise; Eyring, H., Jost, W., and Henderson, D., Eds.; Academic: New York, 1971; Vol. 8B, p 539.

    Google Scholar 

  12. Blum, K. Density Matrix Theory and Applications; Plenum: New York, 1981.

    Book  Google Scholar 

  13. Mukamel, S. Adv. Chem. Phys. 1981, 47, 509.

    Article  CAS  Google Scholar 

  14. van Kampen, N. G. Stochastic Processes in Physics and Chemistry; North-Holland: Amsterdam, 1992.

    Google Scholar 

  15. Louisell, W. H. Quantum Statistical Properties of Radiation; Wiley: New York, 1973.

    Google Scholar 

  16. Quantum Statistics in Optics and Solid State Physics. Statistical Treatment of Open Systems by Generalized Master Equations; Haake, F., Ed.; Springer: Berlin, 1973; Springer Tracts in Modern Physics, Vol. 66.

    Google Scholar 

  17. Haken, H. Laser Theory; Springer: Berlin, 1970.

    Google Scholar 

  18. Sargent III, M., Scully, M. O., and W. E. Lamb, J. Laser Physics; Addison-Wesley: Reading, MA, 1974.

    Google Scholar 

  19. Pollard, W. T., Felts, A. K., and Friesner, R. A. Adv. Chem. Phys. 1996, 93, 77.

    Article  CAS  Google Scholar 

  20. Kohen, D., Marson, C. C., and Tannor, D. J. J. Chem. Phys. 1997, 107, 5236.

    Article  CAS  Google Scholar 

  21. Lindblad, G. Commun. Math. Phys. 1976, 48, 119.

    Article  Google Scholar 

  22. Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. J. Math. Phys. 1976, 17, 821.

    Article  Google Scholar 

  23. Mukamel, S. Chem. Phys. 1979, 37, 33.

    Article  CAS  Google Scholar 

  24. Chernyak, V., and Mukamel, S. J. Chem. Phys. 1996, 105, 4565.

    Article  CAS  Google Scholar 

  25. Alicki, R. and Lendi, K. Quantum Dynamical Semigroups and Applications: Lecture Notes in Physics 286; Springer: New York, 1987.

    Google Scholar 

  26. Dekker, H. Phys. Rep. 1981, 80, 1.

    Google Scholar 

  27. Caldeira, A. O. and Leggett, A. J. Physica A 1983, 121, 587.

    Article  Google Scholar 

  28. Caldeira, A. O. and Leggett, A. J. Ann. Phys. (San Diego) 1983, 149, 374. ISSN 0003–4916.

    Google Scholar 

  29. Grabert, H., Schranm, P., and Ingold, G. L. Phys. Rep. 1988, 168, 115.

    Article  CAS  Google Scholar 

  30. Yan, Y. J. and Mukamel, S. J. Chem. Phys. 1988, 89, 5160.

    Article  CAS  Google Scholar 

  31. Tanimura, Y. and Wolynes, P. G. Phys. Rev. A 1991, 43, 4131.

    Article  CAS  Google Scholar 

  32. Tanimura, Y. and Wolynes, P. G. J. Chem. Phys. 1992, 96, 8485.

    Article  CAS  Google Scholar 

  33. Cao, J. J. Chem. Phys. 1997, 107, 3204.

    Article  CAS  Google Scholar 

  34. Meier, C. and Tannor, D. J. J. Chem. Phys. 1999, 111, 3365.

    Article  CAS  Google Scholar 

  35. Yan, Y. J. Phys. Rev. A 1998, 58, 2721.

    Google Scholar 

  36. Yan, Y. J., Shuang, F., Xu, E. X., Cheng, J. X., Li, X. Q., Yang, C., and Zhang, H. Y. J. Chem. Phys. 2000, IIS, 2068.

    Google Scholar 

  37. Xu, E. X., Yan, Y. J., and Li, X.-Q. Phys. Rev. A 2002, 65, 023807.

    Google Scholar 

  38. Xu, E. X. and Yan, Y. J. J. Chem. Phys. 2002, 116, 9196.

    Article  CAS  Google Scholar 

  39. Breuer, H. P. and Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, 2002.

    Google Scholar 

  40. Weiss, U. Quantum Dissipative Systems; World Scientific: Singapore, 1999. 2nd ed. Series in Modern Condensed Matter Physics, Vol. 10.

    Google Scholar 

  41. Korolkov, M. V., Manz, J., and Paramonov, G. K. J. Phys. Chem. 1996, 100, 13927.

    Article  CAS  Google Scholar 

  42. Berman, M., Kosloff, E., and Tal-Ezer, H. J. Phys. A: Math. Gen. 1992, 25, 1283.

    Article  Google Scholar 

  43. Tal-Ezer, H. High degree interpolation polynomial in Newton form; NASA Langley Eesearch Center: Hampton, VA, 1988. ICASE Eeport no 88–39.

    Google Scholar 

  44. Pollard, W. T. and Friesner, E. A. J. Chem. Phys. 1994, 100, 5054.

    Article  CAS  Google Scholar 

  45. Arnoldi, W. E. Quart. Appl. Math. 1951, 9, 17.

    Google Scholar 

  46. Lanczos, C. J. J. Res. Natl. Bur. Stand. 1950, 45, 255.

    Article  Google Scholar 

  47. Saad, Y. Linear Algebra Appl. 1980, 34, 269.

    Article  Google Scholar 

  48. Friesner, E. A., Tuckerman, L. S., Dornblaster, B. C., and Eusso, T. V. J. Sei. Comput. 1989, 4, 327.

    Article  Google Scholar 

  49. Breuer, H.-P., Kappler, B., and Petruccione, F. Phys. Rev. A 1999, 59, 1633.

    Article  CAS  Google Scholar 

  50. Mo, Y., Xu, E. X., Cui, P., Shao, J. S., Lin, S. H., and Yan, Y. J. Phys. Rev. E 2003 (to be published).

    Google Scholar 

  51. Park, T. J. and Light, J. C. J. Chem. Phys. 1986, 85, 5870.

    Article  CAS  Google Scholar 

  52. Wilkinson, J. H. The Algebraic Eigenvalue Problem; Oxford University Press: London, 1965.

    Google Scholar 

  53. Xu, E. X., Mo, Y., Cui, P., Shao, J. S., and Yan, Y. J. 2003 (to be published).

    Google Scholar 

  54. Karrlein, E. and Grabert, H. Phys. Rev. E 1997, 55, 153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Xu, R., Mo, Y., Cui, P., Lin, SH., Yan, Y. (2003). Non-Markovian Quantum Dissipation in the Presence of External Fields. In: Maruani, J., Lefebvre, R., Brändas, E.J. (eds) Advanced Topics in Theoretical Chemical Physics. Progress in Theoretical Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0635-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0635-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6401-1

  • Online ISBN: 978-94-017-0635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics