Skip to main content

Modeling Quantum Resonances: II. Overview of Collision Theory

  • Conference paper
Book cover Advanced Topics in Theoretical Chemical Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 12))

Abstract

Collision theory is briefly reviewed in the framework of the wave operator theory of quantum dynamics which emphasizes the role played by the resonances. Exact expressions of the on-shell S and T matrices are derived for an exactly solvable model which describes several resonances decaying into several channels. This model is especially relevant for investigating the physics near energy thresholds. The formalism is applied to giant resonances and to a model of laser-assisted electron-atom scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Y. Wu and T. Ohmura, Quantum Theory of Scattering ( Prentice-Hall, Englewood Cliffs, 1962 ).

    Google Scholar 

  2. J. R. Taylor, Scattering Theory ( Wiley, New York, 1972 ).

    Google Scholar 

  3. C. J. Joachain, Quantum Collision Theory ( North-Holland, Amsterdam, 1975 ).

    Google Scholar 

  4. H. Feshbach, Ann. Phys. 5, 357 (1958);

    Article  CAS  Google Scholar 

  5. H. Feshbach, Annu. Rev. Nucl. Sci. 8, 49 (1958);

    CAS  Google Scholar 

  6. H. Feshbach, Ann. Phys. 19, 287 (1962).

    Article  CAS  Google Scholar 

  7. L. Mower, Phys. Rev. 142, 799 (1965).

    Article  Google Scholar 

  8. B. Shore, Rev. Mod. Phys. 39, 439 (1967).

    Article  CAS  Google Scholar 

  9. M. Seaton, Rep. Prog. Phys. 46, 167 (1983).

    Article  Google Scholar 

  10. B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 479 (1950).

    Google Scholar 

  11. Ph. Durand and I. Paidarova, Phys. Rev. A 58, 1867 (1998).

    Article  CAS  Google Scholar 

  12. J. N. Bardsley and F. Mandl, Rep. Prog. Phys. 31, 471 (1968).

    Article  CAS  Google Scholar 

  13. P. G. Burke, Advan. At. Mol. Phys. 4, 173 (1968).

    Article  CAS  Google Scholar 

  14. S. Buckman and C. W. Clark, Revs. Modern Phys. 66, 539 (1994).

    Article  CAS  Google Scholar 

  15. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions; Basic Processes and Applications (J. Wiley, New York 1992) [first edition, Inter Editions and Editions du CNRS, 1988 ].

    Google Scholar 

  16. A. Messiah Quantum Mechanics (North-Holland, Amsterdam, 1966 ), Vol. 2.

    Google Scholar 

  17. Ph. Durand, I. Paidarova, and F. X. Gadea, J. Phys. B 34, 1953 (2001).

    Article  CAS  Google Scholar 

  18. Ph. Durand, I. Paidarova, J. Phys. B 35, 469 (2002).

    Article  CAS  Google Scholar 

  19. R. Levine, Quantum Mechanics of Molecular Rate Processes ( Clarendon Press, Oxford 1969 ).

    Google Scholar 

  20. F. T. Smith, Phys. Rev. 118, 349 (1960).

    Article  Google Scholar 

  21. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  CAS  Google Scholar 

  22. R. Lefebvre, O. Atabek and V. Leon, Phys. Rev.A 65, 042726 (2002).

    Google Scholar 

  23. O. Olendski and L. Mikhailovska, Phys. Rev. B 67, 035310 (2003).

    Google Scholar 

  24. C. Mahaux and H. A. Weidenmuller, Shell Model Approach to Nuclear Reactions ( North-Holland, Amsterdam, 1969 ).

    Google Scholar 

  25. J-P. Connerade and A. M. Lane, Rep. Prog. Phys. 51, 1439 (1988).

    Article  CAS  Google Scholar 

  26. E. Narevicius and N. Moiseyev, J. Chem. Phys. 113, 6088 (2000);

    Article  CAS  Google Scholar 

  27. E. Narevicius and N. Moiseyev, Phys. Rev. Lett. 81, 2221 (1998).

    Article  CAS  Google Scholar 

  28. N. J. Kylstra and C. J. Joachain, Phys. Rev. A 57, 412 (1998).

    Article  CAS  Google Scholar 

  29. B. R. Lewis, S. T. Gibson, P. O’Keeffe, T. Ridley, K. P. Lawley and R. J. Donovan, Phys. Rev. Lett. 86, 1478 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Durand, P., Paidarová, I. (2003). Modeling Quantum Resonances: II. Overview of Collision Theory. In: Maruani, J., Lefebvre, R., Brändas, E.J. (eds) Advanced Topics in Theoretical Chemical Physics. Progress in Theoretical Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0635-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0635-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6401-1

  • Online ISBN: 978-94-017-0635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics