Skip to main content

Abstract

Microbial respiration in the ocean is considered as the major process representative of the organic matter biological oxidation. The corresponding metabolic CO2 production was estimated to be about 22 Pg C y−1 [24]. However, the in situ respiration rate is generally too low (by several orders of magnitude) to be accessible to the available direct measurement methods. Some fluorescent probes, such as DiOC6(3) (Molecular Probes, USA) have been shown to be very sensitive to changes in the proton electrochemical potential difference (\(\Delta {\tilde \mu _{H + }}\)), characterising mitochondrial and plasmic membranes bearing the cell respiratory system in eukaryotic and prokaryotic cells respectively [22, 37].

In mitochondria, \(\Delta {\tilde \mu _{H + }}\) , is linked to the flux of oxygen uptake by a linear relationship [32]. To our knowledge, no such relationship has been established in the case of whole marine cells. In the present work, we addressed the dark respiration rate of the Chlorophyceae Dunaliella tertiolecta (Butcher) in axenic cultures, both directly by using a highly sensitive oxygraph (Oroboros) and by staining cells with DiOC6(3). We found and standardized a linear relationship between oxygen uptake by D. tertiolecta and its green fluorescence induced by DiOC6(3), enabling the determination by flow cytometry of the respiration rate of D. tertiolecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminot A. Dosage de l’oxygène dissous. In: CNEXO, (ed). Manuel des analyses chimiques en milieu marin, pp 75–92. Brest; 1983.

    Google Scholar 

  2. Bunting JR, Phan TV, Kamali E, Dowben RM. Fluorescent cationic probes of mitochondria: metrics and mechanism of interaction. J Biophys Soc 1989; 56: 979–993.

    Article  CAS  Google Scholar 

  3. Cid A, Fidalgo P, Herrero C, Abalde J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 1996; 25: 32–36.

    Article  PubMed  CAS  Google Scholar 

  4. Cid A, Herrero C, Abalde J. Functional analysis of phytoplankton by flow cytometry a study of the effect of copper on a marine diatom. Sci Mar 1996; 60 (Supl 1): 303–308.

    CAS  Google Scholar 

  5. Ehrenberg B, Karkas DL, Fluhler EN, Lojewska Z, Loew LM. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys J 1987; 51: 833–837.

    Article  PubMed  CAS  Google Scholar 

  6. Gnaiger E, Forstner H. Polarographic sensors, Aquatic and physiological applications. Gnaiger E, Forstner H (eds). Berlin/Heidelberg/New York: Springer-verlag, 1983.

    Google Scholar 

  7. Gnaiger E, Kuznetsov AV, Lasnig B, Fuchs A, Reck M, Renner K, et al. High-resolution respirometry-optimum permeabilization of the cell membrane by digitonin. In: Larsson C, Pahlman TL, Gistatsson L, (eds), Bio thermokinetics in the post genomic era, pp 89–95. Göteborg: Chalmers Reproservice, 1998.

    Google Scholar 

  8. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenergetics and Biomembranes 1995; 27 (6): 583–596.

    Article  CAS  Google Scholar 

  9. Gordienko DV, Greenwood IA, Bolton TB. Direct visualization of sarcoplasmic reticulum regions discharging Cat+ sparks in vascular myocytes. Cell Calcium 2001; 29 (1): 13–28.

    Article  PubMed  CAS  Google Scholar 

  10. Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. Part 1: Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 1962; 8: 229–239.

    Article  PubMed  CAS  Google Scholar 

  11. Spence MTZ, ed. Handbook of fluorescent probes and research chemicals. Eugene, Oreg: Molecular Probes, 1998.

    Google Scholar 

  12. Heytler PG. Uncouplers of oxidative phosphorylation. In: Erecinska M, Wilson DF (eds), Inhibitors of mitochondrial function: Pergamon Press; 1981: 199–210.

    Google Scholar 

  13. Johnson KM, Sieburth JM. Coulometric total carbon dioxide analysis for marine studies: automation and calibration. Mar. Chem. 1987; 21: 117–133.

    Article  CAS  Google Scholar 

  14. Joux F, Lebaron P. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes and Infection 2000; 2: 1523–1535.

    Article  PubMed  CAS  Google Scholar 

  15. Juan G, Cavazzoni M, Saez GT, O’Connor JE. A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 1994; 15: 335–342.

    Article  PubMed  CAS  Google Scholar 

  16. Lee C, Wu SS, Chen LB. Photosensitization by 3,3’dihexyloxacarbocyanine iodide Specific disruption of microtubules and inactivation of organelle motility. Can Res 1995; 55: 2063–2069.

    CAS  Google Scholar 

  17. Leprat P, Ratinaud MH, Maftah A, Petit JM, Julien R. Use of nonyl acridine orange and rhodamine 123 to follow biosynthesis and functionnal assembly of mitochondrial membrane during L1210 cell cycle. Exp Cell Res 1990; 186: 130–137.

    Article  PubMed  CAS  Google Scholar 

  18. Mc Feters GA, Yu FP, Pyle BH, Stewart PS. Physiological assessment of bacteria using fluorochromes. J Microbiol Methods 1995; 21: 1–13.

    Article  Google Scholar 

  19. Monfort P, Ratinaud MH, Got P, Baleux B. Apports de la cytométrie en flux et en images en nécologie bactérienne des milieux aquatiques. Océanis 1995; 21 (1): 97–111.

    CAS  Google Scholar 

  20. Nebe-Von Caron G, Badley RA. Viability assessment of bacteria in mixed populations using flow cytometry. J. Microscopy 1995; 179 (1): 55–66.

    Google Scholar 

  21. Nicholls DG. Bioenergetics. An introduction to the chemiosmotic theory. London, New York: Academic Press Inc.; 1982.

    Google Scholar 

  22. Novo D, Perlmutter NG, Hunt RH, Shapiro HM. Accurate flow cytometric membrane potential measurement in bacteria using Diethyloxacarbocyanine and ratiometric technique. Cytometry 1999; 35: 55–63.

    Article  PubMed  CAS  Google Scholar 

  23. Packard T. The measurement of respiratory electron-transport activity in marine phytoplankton. J Mar Res 1971; 29: 235–244.

    Google Scholar 

  24. Packard T, Denis M, Rodier M, Gardfield P. Deep-ocean metabolic CO2 production calculations from ETS activity. Deep-Sea Res 1988; 35 (3): 371–382.

    Article  CAS  Google Scholar 

  25. Packard TT, Berdalet E, Blasco D, Roy SO. St-Amand L, Lagacé B, et al. CO2 production predicted from isocitrate dehydrogenase activity and bisubstrate enzyme kinetics in the marine bacterium Pseudomonas nautica. Aquat Microb Ecol 1996a; 11: 11–19.

    Article  Google Scholar 

  26. Packard TT, Berdalet E, Blasco D, Roy SO, St-Amand L, Lagacé B, et al. Oxygen consumption in the marine bacterium, Pseudomonas nautica predicted from ETS activity and bisubstrate enzyme kinetics. J Plankton Res 1996b; 18: 1819–1835.

    Article  CAS  Google Scholar 

  27. Petit PX, Diolez P, De Kouchkovsky Y. Flows cyto metric analysis of energy transducing organelles mitochondria and chloroplasts. In: Yen A (ed). Flow Cytometry: advanced research and clinical applications, pp 272–303. Florida: CRC Press, 1989.

    Google Scholar 

  28. Petit PX, O’Connor JE, Grunwald D, Brown SC. Analysis of the membrane potential of rat-and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem 1990; 194: 389–397.

    Article  PubMed  CAS  Google Scholar 

  29. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: back to the future. FEBBS Lett 1996; 396: 7–13.

    Article  CAS  Google Scholar 

  30. Ratinaud MH, Revidon S. A flow cytometric method to assess functionnal state of the Listeria membrane. J Microbiol Methods 1996; 25: 71–77.

    Article  Google Scholar 

  31. Redfield AC, Ketchum BH, Richards FA. The influence of organisms on the composition of sea-water. In: Hill MN (ed). The Sea, pp 26–77. New York: Wiley-Interscience; 1963.

    Google Scholar 

  32. Rigoulet M, Guerin B, Denis M. Modification of flow-force relationships by external ATP in yeast mitochondria. Eur J Biochem 1987; 168: 275–279.

    Article  PubMed  CAS  Google Scholar 

  33. Ronot X, Benel L, Adolphe M, Mounolou IC. Mitochondrial analysis in living cells the use of rhodamine 123 and flow cytometry. Biology of the Cell 1986; 57: 1–8.

    Article  PubMed  CAS  Google Scholar 

  34. Rottenberg H, Wu SS. Quantitative assay by flow cytometry of the mitochondria) membrane potential in intact cells. Biochimica et Biophysica Acta 1998; 1404: 393–404.

    Article  PubMed  CAS  Google Scholar 

  35. Roy SO, Packard TT, Berdalet E, St-Amand L. Impact of acetate, pyruvate and physiological state on respiration and respiratory quotients in Pseudomonas nautica. Aquat Microb Ecol 1999; 17: 105–110.

    Article  Google Scholar 

  36. Sabnis RW, Deligeorgiev TG, Jachak MN, Dalvi TS. DiOC6(3): a useful dye for staining the endoplasmic reticulum. Biotechnic Histochemistry 1997; 72 (5): 253–258.

    Article  PubMed  CAS  Google Scholar 

  37. Shapiro HM. Practical flow cytometry. New York: Liss AR, Inc; 1988.

    Google Scholar 

  38. Shapiro HM. Membrane potential estimation by flow cytometry. Methods 2000: 21: 271–279.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi T, Broecker WS, Langer S. Redfield ratio based on chemical data from isopycnal surfaces. J Geophys Res 1985; 90: 6907–6924.

    Article  CAS  Google Scholar 

  40. Vives-Rego J, Lebaron P, Nebe-Von Caron G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 2000; 24: 429–448.

    Article  PubMed  CAS  Google Scholar 

  41. Williams PJLB. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman DL (ed), Microbial ecology of the oceans, pp 153–200. New York: Wiley-Liss, Inc.; 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Denis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grégori, G., Denis, M., Lefèvre, D., Beker, B. (2003). A flow cytometric approach to assess phytoplankton respiration. In: Sobti, R.C., Krishan, A. (eds) Advanced Flow Cytometry: Applications in Biological Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0623-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0623-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6368-7

  • Online ISBN: 978-94-017-0623-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics