Skip to main content

Behavioural ecology and retinal cell topography

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

The vertebrate retina is an extension of the brain, a hemisphere of neural tissue upon which is mapped an image of a particular species visual environment. Each point in visual space is subtended by a corresponding point on the neural retina which in turn is retinotopically mapped onto the visual centres of the brain. Light energy or the ‘optical image’ is transformed into electrical energy or a ‘neural image’ by the photoreceptors and, via a number of interneurons (bipolar, amacrine and horizontal cells), these signals reach the ganglion cells each of which possess an axon carrying information to the central nervous system via the optic nerve. Although processing at the level of the photoreceptors may not necessarily change the neural image, due to the over abundance of photoreceptors relative to the number of ganglion cells, it is the ganglion cells which ultimately define the perception of a species’ environment received by the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbert, I.-B. (1976) Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zoologica (Stockholm), 57, 13–35.

    Google Scholar 

  • Ali, M. A. and Anctil, M. (1976) Retinas of fishes. An atlas. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Ali, M. A., Anctil, M. and Raymond, M. (1973) La rétiné de quelque poissons marins du littoral bresilién. Rev. Biol. Lisbon, 9, 101–114.

    Google Scholar 

  • Beazley, L. D., Sheard, P. W., Tennant, M., Starac, D. and Dunlop, S. A. (1997) Optic nerve regenerates but does not restore topographic projections in the lizard Ctenophorus ornatus. The Journal of Comparative Neurology, 377, 105–120.

    Google Scholar 

  • Bloch, S., Rey, J. and Martinoya, C. (1984) Visual acuity as a function of distance for frontal and lateral viewing in the pigeon. III. Different patterns of eye movements for binocular and monocular fixation. Brain Behavior and Evolution, 13, 173–182.

    Google Scholar 

  • Bousfield, J. D. and Pessoa, V. F. (1980) Changes in ganglion cell density during the post-metamorphic development in a neotropical frog, Hyla raniceps. Vision Research, 20, 501–510.

    Article  CAS  Google Scholar 

  • Bravo, H. and Pettigrew, J. D. (1981) The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia. The Journal of Comparative Neurology, 199, 419–441.

    Google Scholar 

  • Brown, K. T. (1969) A linear area centralis extending across the turtle retina and stabilized to the horizon by non-visual cues. Vision Research, 9, 1053–1062.

    Google Scholar 

  • Budnik, V., Mpodozis, J., Varela, F. J. and Maturana, H. R. (1984) Regional specialization of the quail retina: ganglion cell density and oil droplet distribution. Neuroscience Letters, 51, 145–150.

    Google Scholar 

  • Butcher, E. O. (1938) The structure of the retina of Fundulus heteroclitus and the regions of the retina associated with the different chromatophoric responses. Journal of Experimental Zoology, 79, 275–293.

    Google Scholar 

  • Chievitz, J. H. (1889) Untersuchungen über die Area centralis retinae. Arch. Anat. Physiol. Anat. Abt. Suppl, 1889, 139–194.

    Google Scholar 

  • Chievitz, J. H. (1891) Ueber das Vorkommen der Area centralis retinae in den vier höheren Wirbelthierklassen. Arch. Anat. Physiol. Anat. Abt, 1891, 311–333.

    Google Scholar 

  • Coleman, L.-A., Dunlop, S. A. and Beazley, L. D. (1984) Patterns of cell division during visual streak formation in the frog Limnodynastes dorsalis. Journal of Embryology and Experimental Morphology, 83, 119–135.

    Google Scholar 

  • Collett, T. S. and Harkness, L. I. K. (1982) Depth vision in animals, in Analysis of visual behavior (eds. Ingle, D. J., Goodale, M. A. and Mansfield, R. J. W. ). MIT Press, Cambridge, Massachusetts, pp. 111–176.

    Google Scholar 

  • Collin, S. P. (1987) Retinal topography in reef teleosts,PhD Thesis, University of Queensland, Australia. Collin, S. P. (1988) The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Experimental Biology, 47, 195–207.

    Google Scholar 

  • Collin, S. P. (1989) Topography and morphology of retinal ganglion cells in the coral trout Plectropoma leopardus (Serranidae): A retrograde cobaltous-lysine study. The Journal of Comparative Neurology, 281, 143–158.

    Google Scholar 

  • Collin, S. P. (1997) Specialisations of the teleost visual system: Adaptive diversity from shallow-water to deep-sea. Acta Physiologica Scandinavica, 161 Supplement, 5–24.

    Google Scholar 

  • Collin, S. P. and Ali, M. A. (1994) Multiple areas of acute vision in two freshwater teleosts, the creek chub, Semotilus atromaculatus (Mitchell) and the cutlips minnow, Exoglossum maxillingua (Lesueur). Canadian Journal of Zoology, 72, 721–730.

    Article  Google Scholar 

  • Collin, S. P. and Collin, H. B. (1988) Topographic analysis of the retinal ganglion cell layer and optic nerve in the sandlance Limnichthyes fasciatus (Creediidae, Perciformes). The Journal of Comparative Neumlogy, 278, 226–241.

    Google Scholar 

  • Collin, S. P. and Fritzsch, B. (1993) Observations on the shape of the lens in the eye of the silver lamprey, Ichthyomyzon unicuspis. Canadian Journal of Zoology, 72, 721–730.

    Article  Google Scholar 

  • Collin, S. P. Hoskins, R. V. and Partridge, J. C. (1997) Tubular eyes of deep-sea fishes: A comparative study of retinal topography. Brain Behavior and Evolution, 50, 335–357.

    Google Scholar 

  • Collin, S. E, Hoskins, R. V. and Partridge, J. C. (1998) Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: A case study in visual optimisation. Brain Behavior and Evolution, 51, 291–314.

    Google Scholar 

  • Collin, S. P. and Northcutt, R. G. (1993) The visual system of the Florida garfish, Lepisosteus platyrhincus. (Ginglymodi): III. Retinal ganglion cells. Brain Behavior and Evolution, 42, 295–320.

    Google Scholar 

  • Collin, S. P. and Partridge, J. C. (1996) Retinal specializations in the eyes of deep-sea teleosts. Journal of Fish Biology, 49 (Supplement A), 157–174.

    Article  Google Scholar 

  • Collin, S. P. and Pettigrew, J. D. (1988a) Retinal topography in reef teleosts. I. Some species with well developed areae but poorly developed streaks. Brain Behavior and Evolution, 31, 269–282.

    Google Scholar 

  • Collin, S. P. and Pettigrew, J. D. (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high density areae. Brain Behavior and Evolution, 31, 283–295.

    Article  CAS  Google Scholar 

  • Collin, S. P. and Pettigrew, J. D. (1988c) Retinal ganglion cell topography in teleosts: a comparison between Nissl-stained material and retrograde labelling from the optic nerve. The Journal of Comparative Neurology, 276, 412–422.

    Google Scholar 

  • Costa, B. L. S. A., Pessoa, V. F., Bousfield, J. D. and Clarke, R. J. (1987) Unusual distribution of ganglion cells in the retina of the three-toed sloth (Bradypus variegatus). Brazilian Journal of Medical and Biological Research, 20, 741–748.

    PubMed  CAS  Google Scholar 

  • Costa, B. L. S. A., Pessoa, V. E, Bousfield, J. D. and Clarke, R. J. (1989) Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.). Brazilian Journal of Medical and Biological Research, 22, 233–236.

    Google Scholar 

  • Dawson, W. W. (1987) Corneal surface properties of two marine mammal species. Marine Mammal Science, 3, 186–197.

    Google Scholar 

  • Drager, U. C. and Olsen, J. F. (1981) Ganglion cell distribution in the retina of the mouse. Investigative Ophthalmology, 20, 285–293.

    Google Scholar 

  • Dral, A. D. G. (1972) Aquatic and aerial vision in the bottlenosed dolphin. Netherlands Journal of Sea Research, 5, 510–513.

    Google Scholar 

  • Dral, A. D. G. (1977) On the retinal anatomy of cetacea (mainly Tursiops truncatus), in Functional anatomy of marine mammals (ed Harrison, R. J. ), Academic Press, London, pp. 81–134.

    Google Scholar 

  • Dujim, M. (1958) On the position of a ribbon-like central area in the eyes of some birds. Archs néer. Zool. Supplement, 13, 128–145.

    Google Scholar 

  • Dunlop, S. A. and Beazley, L. D. (1981) Changing retinal ganglion cell distribution in the frog Heleioporus eyrei. The Journal of Comparative Neurology, 202, 221–236.

    Google Scholar 

  • Dunlop, S. A. and Beazley, L. D. (1985) Changing distribution of ganglion cells during area centralis and visual streak formation in the marsupial Setonix brachyurus. Developmental Brain Research, 23, 81–90.

    Google Scholar 

  • Dunlop, S. A., Ross, W. M. and Beazley, L. D. (1994) The retinal ganglion cell layer and optic nerve in a marsupial, the honey possum (Tarsipes rostratus). Brain Behavior and Evolution, 44, 307–323.

    Google Scholar 

  • Dunn-Meynell, A. A. and Sharma, S. C. (1987) Visual system of the channel catfish (Ictalurus punctatus): II. The morphology associated with the multiple optic papillae and retinal ganglion cell distribution. The Journal of Comparative Neurology, 257, 166–175.

    Google Scholar 

  • Easter, S. S. Jr. (1992) Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. The Journal of Neuroscience, 12, 2381–2392.

    Google Scholar 

  • Ehrlich, D. (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. The Journal of Comparative Neurology, 195, 643–657.

    Google Scholar 

  • Engström, K. (1963) Cone types and cone arrangements in teleost retinae. Acta Zoologica (Stockholm), 44, 179–243.

    Google Scholar 

  • Fischer, Q. S. and Kirby, M. A. (1991) Number and distribution of retinal ganglion cells in anubis baboons (Papio anubis). Brain Behavior and Evolution, 37, 189–203.

    Google Scholar 

  • Fite, K, V. and Lister, B. C. (1981) Bifoveal vision in anolis lizards. Brain Behavior and Evolution, 19, 144–154.

    Google Scholar 

  • Frank, B. D. and Hollyfield, J. G. (1987) Retinal ganglion cell morphology in the frog, Rana pipiens. The Journal of Comparative Neurology, 266, 413–434.

    Google Scholar 

  • Fritzsch, B. and Collin, S. P. (1990) Dendritic distribution of two populations of ganglion cells and the retinopetal fibres in the retina of the silver lamprey (Ichthyomyzon unicuspis). Visual Neuroscience, 4, 533–545.

    Google Scholar 

  • Gillett, W. G. (1923) The histologic structure of the eye of the soft-shelled turtle. American Journal of Ophthalmology, 6, 955–973.

    Google Scholar 

  • Graydon, M. L. and Giorgi, P. P. (1984) Topography of the retinal ganglion cell layer of Xenopus. Journal of Anatomy, 139, 145–157.

    Google Scholar 

  • Harkness, L. and Bennett-Clark, H. C. (1978) The deep fovea as a focus indicator. Nature (London), 272, 814–816.

    Google Scholar 

  • Hayes, B. P., Martin, G. R. and Brooke, M. de L. (1991) Novel area subserving binocular vision in the retinae of Procellariform seabirds. Brain Behavior and Evolution, 37, 79–84.

    Google Scholar 

  • Hodos, W. and Erichsen, J. T. (1990) Lower-field myopia in birds: An adaptation that keeps the ground in focus. Vision Research, 30, 653–657.

    Google Scholar 

  • Holmberg, K. (1972) Fine structure of the optic tract in the Atlantic hagfish, Myxine glutinosa. Acta Zoologica (Stockholm), 53, 155–171.

    Google Scholar 

  • Hueter, R. E. (1991) Adaptations for spatial vision in sharks. The Journal of Experimental Zoology Supplement, 5, 130–141.

    Google Scholar 

  • Hughes, A. (1974) A comparison of retinal ganglion cell topography in the plains and tree kangaroo. Journal of Physiology, 244, 61–63P.

    Google Scholar 

  • Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organization in Handbook of sensory physiology, Volume VIFS (eds Autrum, H., Jung, R., Loewenstein, W. R., MacKay, D. M. and Teuber, H. L.), Springer-Verlag, New York, pp. 613–756.

    Google Scholar 

  • Humphrey, M. F. (1988) A morphometric study of the retinal ganglion cell response to optic nerve severance in the frog, Rana pipiens. Journal of Neurocytology, 17, 293–204.

    Google Scholar 

  • Humphrey, M. F. and Beazley, L. D. (1985) Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei. The Journal of Comparative Neurology, 236, 382–402.

    Google Scholar 

  • Inzunza, O. Bravo, H. and Smith R. L. (1989) Foveal regions of bird retinas correlate with the aster of the inner nuclear layer. The Anatomical Record, 223, 342–346.

    Google Scholar 

  • Ito, H. and Murakami, T. (1984) Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. The Journal of Comparative Neurology, 229, 80–96.

    Google Scholar 

  • Johns, P. R. and Easter, S. S. Jr. (1977) Growth of the adult goldfish eye. II. Increase in retinal cell number. The Journal of Comparative Neumlogy, 176, 331–342.

    Google Scholar 

  • Kahmann, H. (1934) Ueber die Vorkommen einer Fovea centralis im Knochenfischauge. Zoologischer Anzeiger, 106, 49–55.

    Google Scholar 

  • Kahmann, H. (1935) Ueber das foveale Sehen der Wirbeltiere. II. Gesichtsfeld und Fovea centralis. Sitz. Ges. naturf. Freunde, pp. 361–376.

    Google Scholar 

  • Kalinina, A. V. (1976) Quantity and topography of frog’s retinal ganglion cells. Vision Research, 16, 929–934.

    Google Scholar 

  • Kawamura, G. and Ohashi, S. (1988) The habit of cutlassfish as inferred from the retina. Nippon Suisan Gakkaishi, 54, 889.

    Google Scholar 

  • Locket, N. A. (1971) Retinal structure in Platytroctes apus, a deep-sea fish with a pure rod fovea. Journal of the Marine Biological Association of the United Kingdom, 51, 79–91.

    Google Scholar 

  • Locket, N. A. (1985) The multiple bank rod fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proceedings of the Royal Society of London B, 224, 7–22.

    Google Scholar 

  • Locket, N. A. (1992) Problems of deep foveas. Australian and New Zealand Journal of Ophthalmology, 20, 281–295.

    Google Scholar 

  • Makaretz, M. and Levine, R. L. (1980) A light microscopic study of the bifoveate retina in the lizard Anolis carolinensis: General observations and convergence ratios. Vision Research, 20, 679–686.

    Google Scholar 

  • Maldonado, P. E., Maturana, H. and Varela, F. J. (1988) Frontal and lateral visual system in birds: Frontal and lateral gaze. Brain Behavior and Evolution, 32, 57–62.

    Article  CAS  Google Scholar 

  • Mariani, A. P. and Leure-Dupree, A. E. (1978) Photoreceptors and oil droplet colors in the red field of the pigeon retina. The Journal of Comparative Neurology, 182, 821–837.

    Google Scholar 

  • Martin, G. R. and Brooke, M. de L. (1991) The eye of a procellariform seabird, the manx shearwater, Puffinus puffinus: Visual fields and optical structure. Brain Behavior and Evolution, 37, 65–78.

    Google Scholar 

  • Mass, A. M. and Supin, A. Y. (1992) Peak density, size and regional distribution of ganglion cells in the retina of the furseal Callorhinus ursinus. Brain Behavior and Evolution, 39, 69–76.

    Article  CAS  Google Scholar 

  • Mass, A. M. and Supin, A. Y. (1995) Ganglion cell topography of the retina in the bottlenosed dolphin, Tursiops truncatus. Brain Behavior and Evolution, 45, 257–265.

    Article  CAS  Google Scholar 

  • Mathews, G, V. T. (1968) Bird navigation,Cambridge Monographs in Experimental Biology No. 3, Cambridge, pp. 1–197.

    Google Scholar 

  • Mednick, A. S. and Springer, A. D. (1988) Asymmetric distribution of retinal ganglion cells in goldfish. The Journal of Comparative Neurology, 268, 49–59.

    Google Scholar 

  • Mednick, A. S., Berk, M. F. and Springer, A, D. (1988) Asymmetric distribution of cells in the inner nuclear and cone mosaic layers of the goldfish retina. Neuroscience Letters, 94, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. H. and Snyder, A. W. (1976) The tiered vertebrate retina. Vision Research, 17, 239–255.

    Google Scholar 

  • Moroney, M. K. and Pettigrew, J. D. (1987) Some observations on the visual optics of kingfishers (Ayes, Caraciformes, Alcedinidae). Journal of Comparative Physiology A, 160, 137–149.

    Article  Google Scholar 

  • Munk, O. (1970) On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Videnskabelige Meddelelser fra Dansk Naturhistorik Forening i Kjobenhavn, 133, 85–120.

    Google Scholar 

  • Nalbach, H.-O., Wolf-Oberhollenzer, E and Kirschfeld, K. (1990) The pigeon’s eye viewed through an ophthalmoscope microscope: orientation of retinal landmarks and significance of eye movements. Vision Research, 30, 529–540.

    Google Scholar 

  • Nguyen, V.-S. and Straznicky, C. (1989) The development and the topographic organisation of the retinal ganglion cell layer in Bufo marinus. Experimental Brain Research, 75, 345–353.

    Google Scholar 

  • O’Connell, C. P. (1963) The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. Journal of Morphology, 113, 287–330.

    Google Scholar 

  • Ott, M. and Schaeffel, F. (1995) A negatively powered lens in the chameleon. Nature, 373, 692–694.

    Google Scholar 

  • Patzner, R. A. (1978) Experimental studies on the light sense in the hagfish, Eptatretus burgeri and Paramyxine atami (Cyclostomata). Helgoländer Wiss. Meeresunters, 31, 180–190.

    Google Scholar 

  • Perry, V. H., Henderson, Z. and Linden, R. (1983) Postnatal changes in retinal ganglion and optic axon populations in pigmented rat. The Journal of Comparative Neurology, 219, 356–368.

    Google Scholar 

  • Peterson, E. H. and Rowe, M. H. (1980) Different regional specializations of neurons in the ganglion cell layer and inner plexiform layer of the California horned shark, Heterodontus francisci. Brain Research, 201, 195–201.

    Google Scholar 

  • Peterson, E. H. and Ulinski, P. S. (1979) Quantitative studies of retinal ganglion cells in a turtle Pseudemys scripta elegans. I. Number and distribution of ganglion cells. The Journal of Comparative Neurology, 186, 17–42.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. (1990) Evolution of binocular vision, in Vision and visual dysfunction, Volume III. Evolution of the eye and visual system. (eds Gregory, R. and Cronley-Dillon, J. R.), CRC Press, Florida, USA, pp. 271–283.

    Google Scholar 

  • Pettigrew, J. D. and Collin, S. P. (1995) Terrestrial optics in an aquatic eye: The sandlance, Limnichthyes fasciatus (Creediidae, Teleostei). Journal of Comparative Physiology A, 177, 398–408.

    Google Scholar 

  • Pettigrew, J. D., Dreher, B., Hopkins, C. S., McCall, M. J. and Brown, M. (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behavior and Evolution, 32, 39–56.

    Google Scholar 

  • Pumphrey, R. J. (1948) The theory of the fovea. Journal of Experimental Biology, 25, 299–312.

    Google Scholar 

  • Pumphrey, R. J. (1961) Sensory organs. Part 1, in Biology and comparative physiology of birds Volume II (ed Marshall, A. J.), Academic Press, New York, pp. 55–68.

    Google Scholar 

  • Reymond, L. (1987) Spatial visual acuity of the falcon, Falco berigora: A behavioral, optical and anatomical investigation. Vision Research, 27, 1859–1874.

    Google Scholar 

  • Rivamonte, A. (1976) Eye model to account for comparable aerial and underwater acuities of the bottlenose dolphin. Netherlands Journal of Sea Research, 10, 491–498.

    Article  Google Scholar 

  • Schmid, K. L., Schmid, L. M., Wildsoet, C. E. and Pettigrew, J. D. (1992) Retinal topography in the koala (Phascolarctos cinereus). Brain Behavior and Evolution, 39, 8–16.

    Google Scholar 

  • Schwassmann, H. O. (1968) Visual projection upon the optic tectum in foveate marine teleosts. Vision Research, 8, 1337–1348.

    Article  PubMed  CAS  Google Scholar 

  • Schwassmann, H. O. and Kruger, L. (1965) Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Research, 5, 269–281.

    Google Scholar 

  • Slonaker, J. R. (1897) A comparative study of the area of acute vision in vertebrates. Journal of Morphology, 13, 445–492.

    Google Scholar 

  • Snyder, A. W. and Miller, W. H. (1978) Telephoto system of falconiform eyes. Nature, 275, 127–129.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W. K. and Witkovsky, P. (1973) Retinal structure in the smooth dogfish Mustelus canin: general description and light microscopy of giant ganglion cells. Journal of Comparative Neurology, 148, 1–32.

    Google Scholar 

  • Stiles, W. S. and Crawford, B. H. (1933) The luminous efficiency of rays entering the eye pupil at different points. Proceedings of the Royal Society of London (Biology), 112, 428–450.

    Google Scholar 

  • Stone, J. (1965) A quantitative analysis of the distribution of ganglion cells in the cat retina. The Journal of Comparative Neurology, 124, 337–352.

    Google Scholar 

  • Stone, J. and Halasz, P. (1989) Topography of the retina in the elephant Loxodonta africana. Brain Behavior and Evolution, 34, 84–95.

    Google Scholar 

  • Tancred, E. (1981) The distribution and sizes of ganglion cells in the retinae of five Australian marsupials. The Journal of Comparative Neurology, 196, 585–603.

    Google Scholar 

  • Vaney, D. I. (1980) A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina. The Journal of Comparative Neurology, 189, 215–233.

    Google Scholar 

  • Vilter, V. (1954) Différenciation fovéale dans l’appareil visuel d’un poisson abyssal, le Bathylagus benedicti. Compte Rendu des Séances de la Société Biologie, Paris, 148, 59–63.

    Google Scholar 

  • Wagner, H.-J., Menezes, N. A. and Ali, M. A. (1976) Retinal adaptations in some Brazilian tide pool fishes. Zoomorphology, 83, 209–226.

    Google Scholar 

  • Waller, G. N. H. (1984) The ocular anatomy of cetacea: an historical perspective, in Investigation of cetacea, Vol. XVI (ed Pillery, G.). pp. 138–148.

    Google Scholar 

  • Walls, G. (1942) The vertebrate eye and its adaptive radiation, New York, Hafner.

    Book  Google Scholar 

  • Wilhelm, M. and Straznicky, C. (1992) The topographic organisation of the retinal ganglion cell layer of the lizard, Ctenophorus nuchalis. Archives of Histology and Cytology, 55, 251–259.

    Article  CAS  Google Scholar 

  • Wong, R. O. L. (1989) Morphology and distribution of neurons in the retina of the american garter snake Thamnophis sirtalis. The Journal of Comparative Neurology, 283, 587–601.

    Article  CAS  Google Scholar 

  • Wong, R. O. L. and Hughes, A. (1987) The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. The Journal of Comparative Neurology, 255, 159–177.

    Google Scholar 

  • Wood, C. A. (1917) The fondus oculi of birds especially as viewed by the ophthalmoscope. The Lakeside Press, Chicago, pp. 1–180.

    Google Scholar 

  • Zaunreiter, M., Junger, H. and Kotrschal, K. (1991) Retinal morphology of cyprinid fishes: a quantitative histological study of ontogenetic changes and interspecific variation. Vision Research, 31, 383–394.

    Google Scholar 

  • Zhang, Y. and Straznicky, C. (1991) The morphology and distribution of photoreceptors in the retina of Bufo marinus. Anatomy and Embryology, 183, 97–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Collin, S.P. (1999). Behavioural ecology and retinal cell topography. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics