Skip to main content

Recombination of Cooled Highly Charged Ions with Low-Energy Electrons

  • Chapter
The Physics of Multiply and Highly Charged Ions

Abstract

The basic processes of recombination between free electrons and atomic ions are reviewed. We concentrate particularly here on spectroscopic studies of few-electron atomic systems by dielectronic recombination at the electron cooler of the CRYRING heavy-ion storage ring facility. Recent measurements of dielectronic recombination resonances with Li-like, Na-like, and Cu-like ions are shown, where a resolution in the order of 10−3 eV was obtained just above the first ionization threshold. Theories for recombination are discussed. From the spectra of the dielectronic resonances very accurate values for energy splittings and resonance strengths are derived. These allow crucial tests of relativistic, correlation, and quantum electrodynamical effects in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Schuch, in Review of Fundamental Processec and Applications of Atoms and Ions, edited by C. D. Lin ( World Scientific Publ., Singapore, 1993 ).

    Google Scholar 

  2. F. Bosch, in Physics of Electronic and Aromic Collisions, edited by T. Andersen et al. ( American Institute of Physics, New York, 1993 ), p. 3.

    Google Scholar 

  3. R. E. Marrs, P. Beiersdorfer, and D. Schneider, Physics Today, Oct. 1994, p. 27.

    Google Scholar 

  4. M. Larsson, Rep. Prog. Phys. 58, 1267 (1995).

    Google Scholar 

  5. D. Bates, A. Kingston, and R. McWhirter, Proc. Roy. Soc. A 267, 297 (1962).

    Article  ADS  Google Scholar 

  6. J. Dubau and S. Volonte, Reports on Progress in Physics 43, 199 (1980).

    Article  ADS  Google Scholar 

  7. D. E. Osterbrock, in Astrophys. of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, Mill Valley, California, 1989 ).

    Google Scholar 

  8. Y. Hahn, in Atomic and Molecular Processes in Fusion Edge Plasmas, edited by R. Janev ( Plenum Publ. Corp., New York, 1995 ), p. 91.

    Google Scholar 

  9. A. Burgess, Astrophys. J. 139, 776 (1964).

    Article  ADS  Google Scholar 

  10. A. Burgess, Astrophys. J. 141, 1588 (1965).

    Article  ADS  Google Scholar 

  11. W. Spies et al.,Phys. Rev. Lett. 69, 2768 (1992).

    Google Scholar 

  12. G. Kilgus et al.,Phys. Rev. 47, 4859 (1993).

    Google Scholar 

  13. D. R. DeWitt et al.,Phys. Rev. A 50, 1257 (1994).

    Google Scholar 

  14. D. R. DeWitt et al.,J. Phys. B 28, L147 (1995).

    Google Scholar 

  15. H. T. Schmidt et al.,Phys. Rev. Lett. 72, 1616 (1994).

    Google Scholar 

  16. S. Mannervik et al.,Phys. Rev. A 55, 810 (1997).

    Google Scholar 

  17. S. Mannervik et al.,Phys. Rev. Lett 81, 313 (1998).

    Google Scholar 

  18. R. Stensgaard, Physica Scripta T 22, 315 (1988).

    Article  ADS  Google Scholar 

  19. K. Abrahamsson et al.,Nuclear Intruments and Methods B 79, 269 (1993).

    Google Scholar 

  20. Blasche, D. Bohne, B. Franzke, and H. Prange, IEEE Trans. Nucl. Sci. NS 32, 2657 (1985).

    Article  ADS  Google Scholar 

  21. B. Franzke, Nucl. Inst. Meth. B 24, 18 (1987).

    Article  Google Scholar 

  22. P. Baumann et al.,Nucl. Inst. Meth. B 268, 531 (1988).

    Google Scholar 

  23. See e.g., CERN Accerator school, CERN 84–15 (edited by P.Bryant and S. Newman,1984), CERN 85–19 (edited by P.Bryant and S. Turner,1985), CERN 87–03 (edited by S. Turner,1987),.

    Google Scholar 

  24. H. Danared et al.,Phys.Rev. Lett. 72, 3775 (1994).

    Google Scholar 

  25. A. Aleksandrov et al.,in Proc. Workshop on Electron Cooling and New Cooling Techniques, Legnaro 1990 (World Scientific, Singapore, 1991), p. 279.

    Google Scholar 

  26. R. Schuch et al.,Nucl. Instr. Meth. A 79, 59 (1993).

    Google Scholar 

  27. H. A. Kramers, Philos. Mag. 46, 836 (1923).

    Google Scholar 

  28. M. Stobbe, Annalen der Physik (Leipzig) 7, 661 (1930).

    Article  ADS  MATH  Google Scholar 

  29. D. Griffin, Phys. Scripta, T 28, 17 (1989).

    Article  ADS  Google Scholar 

  30. H. Gao et al.,Phys. Rev. Lett. 75, 4381 (1995).

    Google Scholar 

  31. H. Gao et al.,J. Phys. B 30, L499 (1997).

    Google Scholar 

  32. G. Gwinner et al.,Phys. Rev. Lett 84, 4822 (2000).

    Google Scholar 

  33. S. Salomonson and P. Öster, Phys. Rev. A 40, 5559 (1989).

    Article  ADS  Google Scholar 

  34. S. Salomonson and P. Oster, Phys. Rev. A 40, 5548 (1989).

    Article  ADS  Google Scholar 

  35. S. Salomonson and P. Oster, Phys. Rev. A 41, 4670 (1990).

    Article  ADS  Google Scholar 

  36. E. Lindroth and J. Hvarfner, Phys. Rev. A 45, 2771 (1991).

    Article  ADS  Google Scholar 

  37. E. Lindroth, Phys. Rev. A 49, 4473 (1994).

    Article  ADS  Google Scholar 

  38. W. Zong et al.,Phys. Rev. A 56, 386 (1997).

    Google Scholar 

  39. E. Lindroth, Hyperfine Interactions 114, 219 (1998).

    Article  ADS  Google Scholar 

  40. For an account of the early contributions to the complex rotation method see the whole No. 4 issue of Int. J. Quantum Chem. 14 (1978).

    Google Scholar 

  41. Y. K. Ho, Phys. Rev. A 23, 2137 (1981).

    Article  ADS  Google Scholar 

  42. K. T. Chung and B. F. Davis, Phys. Rev. A 26, 3278 (1982).

    Article  ADS  Google Scholar 

  43. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  44. M. Tokman et al.,Phys. Rev. A 66 012703 (2002)

    Google Scholar 

  45. H. Danared, Physica Scripta 48, 405 (1993).

    Article  ADS  Google Scholar 

  46. M. Fogle et al.,to be published.

    Google Scholar 

  47. S. Asp et al.,Nucl. Inst. Meth. B 117, 31 (1996).

    Google Scholar 

  48. D. R. DeWitt et al.,Phys. Rev. A 53, 2327 (1996).

    Google Scholar 

  49. R. Schuch et al.,Hyperfine Interactions 99, 317 (1996).

    Google Scholar 

  50. S. Madzunkov et al.,Phys. Rev. A, 65, 032505 (2002).

    Google Scholar 

  51. NIST Atomic Spectra Database. (WWW published at http://physics.nist.gov/cgi-bin/AtData/main_asd.).

    Google Scholar 

  52. N. R. Badnell, J. Phys. B 30, 1 (1997).

    Article  ADS  Google Scholar 

  53. W. Zong et al.,J. Phys. B 31, 3729 (1998).

    Google Scholar 

  54. P. Glans et al.,Phys. Rev. A, 64, 043609 (2001).

    Google Scholar 

  55. W. R. Johnson and G. Soff, Atomic Data and Nuclear Data Tables 33, 405 (1985).

    Article  ADS  Google Scholar 

  56. D. K. McKenzie and G. W. F. Drake, Phys. Rev. A 44, 6973 (1991).

    Article  ADS  Google Scholar 

  57. S. A. Blundell, Phys. Rev. A 46, 3762 (1992).

    Article  ADS  Google Scholar 

  58. P. Beiersdorfer et al.,Phys. Rev. Lett. 80, 3022 (1998).

    Google Scholar 

  59. K. T. Cheng, M. H. Chen, and J. Sapirstein, Phys. Rev. A 62, 054501 (2000).

    Google Scholar 

  60. S. A. Blundell, P. J. Mohr, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 48, 2615 (1993).

    Article  ADS  Google Scholar 

  61. I. Lindgren, H. Persson, S. Salomonson, and L. Labzowsky, Phys. Rev. A 51, 1167 (1995).

    Article  ADS  Google Scholar 

  62. H. Persson, S. Salomonson, P. Sunnergren, and I. Lindgren, Phys. Rev. Lett. 76, 204 (1996).

    Article  ADS  Google Scholar 

  63. P. J. Mohr and J. Sapirstein, Phys. Rev. A 62, 052501 (2000).

    Google Scholar 

  64. I. Lindgren, B. Âsén, S. Salomonson, and A-M. Mârtensson-Pendrill, Phys. Rev. A 64, 062505 (2001).

    Google Scholar 

  65. V. A. Yerokhin et al.,Phys. Rev. Lett. 85, 4699 (2000).

    Google Scholar 

  66. V. A. Yerokhin et al.,Phys. Rev. A 60, 3522 (1999).

    Google Scholar 

  67. R Bosselmann et al.,Phys. Rev. A 59, 1874 (1999).

    Google Scholar 

  68. C. Brandau, A. Müller, et al.,private communication.

    Google Scholar 

  69. D. D. Dietrich et al.,Phys. Rev. A. 22, 1109 (1980).

    Google Scholar 

  70. B. Denne and E. Hinnov, Phys. Scr. 35, 811 (1987).

    Article  ADS  Google Scholar 

  71. E. Hinnov, TFTROperatingTeam, B. Denne, and JETOperatingTeam, Phys. Rev. A. 40, 4357 (1989).

    Article  ADS  Google Scholar 

  72. S. Martin et al.,Phys. Rev. A 42, 6570 (1990).

    Google Scholar 

  73. S. Baird et al.,Phys. Lett. B 361, 184 (1995).

    Google Scholar 

  74. O. Uwira et al.,Hyperfine Interactions 108, 149 (1997).

    Google Scholar 

  75. A. Müller et al.,Phys. Scr. T37, 62 (1991).

    Google Scholar 

  76. E. Lindroth et al.,Phys. Rev. Lett. 86, 5027 (2001).

    Google Scholar 

  77. M. Tokman et al.,Phys. Scr. T 92, 406 (2001).

    Google Scholar 

  78. M. Tokman et al.,Hyperfine Interactions 132, 385 (2001).

    Google Scholar 

  79. W. R. Johnson, S. A. Blundell, and J. Sapirstein, Physical Review A 42, 1087 (1990).

    Article  ADS  Google Scholar 

  80. P. Indelicato, private communication.

    Google Scholar 

  81. V. A. Yerokhin, Phys. Rev. Lett. 86, 1990 (2001).

    Article  ADS  Google Scholar 

  82. S. Mallampalli and J. Sapirstein, Phys. Rev. A 57, 1548 (1998).

    Article  ADS  Google Scholar 

  83. S. A. Blundell, Phys. Rev. A 47, 1790 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lindroth, E., Schuch, R. (2003). Recombination of Cooled Highly Charged Ions with Low-Energy Electrons. In: Currell, F.J. (eds) The Physics of Multiply and Highly Charged Ions. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0542-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0542-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6402-8

  • Online ISBN: 978-94-017-0542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics