Skip to main content

Elementary Considerations of the Time and Geometry of Rotating Reference Frames

  • Chapter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 135))

Abstract

Elementary methods of synchronization on rotating systems are discussed. It is argued that the continuous time synchronization preferred by Klauber and others is not the time synchronization for making distance measurements but rather leads to a velocity of light which depends on direction. A paradox discovered by Selleri will also be discussed. This paradox involves a limiting case of the rotating disk in which the edge of the disk approximates an inertial frame where the velocity of light depends on direction. In addition, a paradox on the conservation of charge will be resolved by referring to the geometry of the rotating disk. Finally, the isotropy of the velocity of light on rotating frames is discussed along with the experimental evidence of Brillet and Hall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. N. Pellegrini and A. R. Swift, “Maxwell’s equations in a rotating medium: Is there a problem?”, Am. J. Physics. 63 694–705 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Wilson and H. A. Wilson, “On the electric effect of rotating a magnetic insulator in a magnetic field,” Proc. R. Soc. London, Ser. A 89, 99–106 (1913).

    Article  ADS  Google Scholar 

  3. T. A. Weber, “Measurements on a rotating frame in relativity and the Wilson and Wilson experiment”, Am. J. Phys. 65, 946–953 (1997).

    Article  ADS  Google Scholar 

  4. R. D. Klauber, New perspectives on the relativistically rotating disk and non-time-orthogonal reference frames”, Found. Phys. Lett. 11 (5) 405–443 (1998).

    MathSciNet  Google Scholar 

  5. E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).

    Article  ADS  Google Scholar 

  6. F. Selleri, “Noninvariant one way speed of light and locally equivalent reference frames”, Found. of Phys. Lett. 10, 73–83 (1997).

    MathSciNet  Google Scholar 

  7. Alan M. MacRobert, “Time and the amateur astronomer”, Sky and Telescope 94 (4) 48–53 (1997).

    Google Scholar 

  8. Dava Sobel, Longitude (Penguin Books, New York, 1995).

    Google Scholar 

  9. Umberto Eco, The island of the day before (Harcourt Brace, New York, 1995).

    Google Scholar 

  10. Albert Einstein, The Meaning of Relativity (Princeton U.P., Princeton, 1955), pp.55–63.

    Google Scholar 

  11. R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1975 ), pp. 120–131.

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields ( Perga-mon Press, Oxford, 1975 ) pp. 234–238.

    Google Scholar 

  13. D. J. Griffiths, Introduction to Electrodynamics ( Prentice-Hall, Englewood Cliffs, NJ, 1989 ) p. 503.

    Google Scholar 

  14. T. A. Weber, “A note on rotating coordinates in relativity”, Am. J. Phys. 65 (6), 486–487 (1997).

    Article  ADS  MATH  Google Scholar 

  15. P. Ehrenfest, “Gleichförmige Rotation starrer Körper und Relativitätstheorie,” Phys. Z. 10, 918 (1909).

    MATH  Google Scholar 

  16. E. Dewan and M. Beran, “Note on stress effects due to relativistic contraction,” Am. J. Phys. 31517–518 (1959).

    Article  ADS  Google Scholar 

  17. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics ( Cambridge U.P., Cambridge, 1987 ), pp. 67–68.

    MATH  Google Scholar 

  18. Robert D. Klauber “Comments regarding recent articles on relativistically rotating frames” Am. J. Phys. 67 (2), 158–159 (1999).

    Article  ADS  Google Scholar 

  19. T. A. Weber, “Response to Am. J. Phys. 67 (2), 159–160 (1999).

    Article  ADS  Google Scholar 

  20. Albert Einstein, Relativity, (Henry Holt and Company, New York, 1921), Appendix III, pp. 155–159.

    Google Scholar 

  21. A. Brillet and J. L. Hall, “Improved laser test of the isotropy of space” Phys. Rev. Lett. 42 549–552 (1979).

    Article  ADS  Google Scholar 

  22. Guido Rizzi and Matteo Luca Ruggiero “Space geometry of rotating platforms: an operational approach” Found. of Phys. 32 (10), 1525–1556 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weber, T.A. (2004). Elementary Considerations of the Time and Geometry of Rotating Reference Frames. In: Rizzi, G., Ruggiero, M.L. (eds) Relativity in Rotating Frames. Fundamental Theories of Physics, vol 135. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0528-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0528-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6514-8

  • Online ISBN: 978-94-017-0528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics