Skip to main content

Toward a Consistent Theory of Relativistic Rotation

  • Chapter
Relativity in Rotating Frames

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 135))

Abstract

Although most physicists presume the theoretical basis of relativistically rotating systems is well established, there may be grounds to call the traditional analysis of such systems into question. That analysis is argued to be inconsistent with regard to its prediction for circumferential Lorentz contraction, and via the hypothesis of locality, the postulates of special relativity. It is also contended that the traditional analysis is in violation of the continuous and single valued nature of physical time. It is further submitted to be in disagreement with the empirical finding of Brillet and Hall, the global positioning system satellite data, and a light pulse arrival time analysis of the Sagnac experiment.

It is postulated that physical constraints on time (its continuous and single-valued nature) limit the set of possible synchronization/simultaneity schemes in rotation to one, the “flash from center” scheme. A differential geometry analysis based on this simultaneity postulate is presented in which the rotating frame metric is constrained to be locally non-time-orthogonal (NTO) and due to which, all inconsistencies and disagreements with experiment are resolved. The hypothesis of locality is shown to be invalid for rotation specifically, and generally valid only for non-inertial frames in which the metric can have all null off diagonal space-time components (i.e., time is orthogonal to space.) The analysis approach presented does not contravene traditional relativistic theory for translating systems and makes many (but not all) of the same predictions for rotating systems as does the traditional (time orthogonal) analysis.

Experiments performed from the 1880s to the present to test special relativity are summarized, and their relevance to NTO analysis is presented. One test, that of Brillet and Hall, appears capable of discerning between the NTO and traditional approaches to relativistic rotation. It yielded a signal predicted by NTO analysis, but not by the traditional approach. Other evidence in favor of the NTO approach may be inherent in the global positioning system data, and the Sagnac experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R., Vetharaniam, I., Stedman, G.E., “Conventionality of Synchronisation, Gauge Dependence and Test Theories of Relativity”, Phys. Rep. 295(34), 93–180 (March 1998 ). Many articles have appeared on this subject. These authors cite virtually all of them prior to 1998.

    Google Scholar 

  2. Minguzzi, E., “On the Conventionality of Simultaneity”, Found. Phys. Lett. 15, 153 (2002).

    Article  MathSciNet  Google Scholar 

  3. Møller, C., The Theory ofRelativity, Oxford at the Clarendon Press (1969), pp. 223.

    Google Scholar 

  4. Stachel, J., “Einstein and the Rigidly Rotating Disk”, Chapter 1 in Held, General Relativity and Gravitation (Plenum Press, New York, 1980), Stachel, p. 9; A. Einstein, The Meaning of Relativity (Princeton University Press, 1950), footnote on pg 60.

    Google Scholar 

  5. Mashoon, B., “Gravitation and Nonlocality”, gr-qc/0112058; “The Hypothesis of Locality and Its Limitations”, in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics“, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003)

    Google Scholar 

  6. Minguzzi, E., “Simultaneity and generalized connections in general relativity”, Class. Quant. Grav. 20, 2443–2456 (2003), gr-qc/0204063. See Section III.

    Google Scholar 

  7. See ref. [3], p. 223.

    Google Scholar 

  8. Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation (Freeman, New York, 1973 ). See Chapter 6.

    Google Scholar 

  9. Ref. [4], Stachel, p. 7.

    Google Scholar 

  10. Transforming from the 4D Riemann flat space of the lab to the 4D space of the rotating frame implies the 4D space of the rotating frame is also Riemann flat. The traditional analysis does not contradict this, but claims the 2D surface of the rotating disk is curved within the flat 4D rotating frame space.

    Google Scholar 

  11. Grøn, Ø., “Relativistic Description of a Rotating Disk”, Amer. J. Phys. 43, 869–876 (1975); “Rotating Frames in Special Relativity Analyzed in Light of a Recent Article by M. Strauss”, Int. J. Theor. Phys. 16, 603–614 (1977); “Space Geometry in Rotating Frames: A Historical Perspective”, in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics“, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003). Grøn’s treatment has become a classic for traditional approach advocates.

    Google Scholar 

  12. Some may contend that other meter sticks in the rotating frame (such as a meter stick on the far side of the rim) appear to have velocity with respect to a given rim observer. However, an observer fixed on the rim of the disk does not see the far side of the disk moving relative to her, since she, unlike the local Lorentz frame with the same instantaneous linear velocity, is rotating. There are two different local frames of interest here. Both have the same instantaneous rectilinear velocity as a point on the rim. But one rotates relative to the distant stars (at the same rate as the disk itself), and one does not. The latter is a local Lorentz frame. The former is not, and represents the true state of an observer anchored to the disk. The difference in kinematics between these two frames is significant, and is dealt with in Klauber, R., “Non-time-orthogonality, gravitational orbits and Thomas precession”, gr-qc/0007018.

    Google Scholar 

  13. Tartaglia, A., “Lengths on Rotating Platforms”, Founds. Phys. Lett., 12, 17–28 (1999). Tartaglia and I have made the point in this paragraph independently.

    Google Scholar 

  14. Nikolic’, H., “Relativistic contraction and related effects in noninertial frames”, Phys. Rev. A. 61, 032109 (2000), gr-qc/9904078; “Fermi coordinates and rotation”, in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics“, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003). Nikolic’ presents a resolution of this based on the postulate that “although there is no relative motion among different points on a rotating disc, each point belongs to a different non-inertial frame”. Though Nikolic’ focuses on Fermi frames, for which this postulate may hold, the present author disagrees with it for the physical frame of the rotating disk. The present author considers the definition of the term “frame” to mean precisely that “there is no relative motion among different points therein.”

    Google Scholar 

  15. Selleri, F., “Noninvariant One-Way Speed of Light and Locally Equivalent Reference Frames”, Found. Phys. Lett. 10, 73–83 (1997). Selleri presents this argument quantitatively and makes a cogent argument for violation of the first postulate of SRT.

    Google Scholar 

  16. For example, see Budden, T., “Geometric Simultaneity and the Continuity of Special Relativity”, Found. Phys. Lett. 11, 343–357 (Aug 1998).

    Article  MathSciNet  Google Scholar 

  17. Also, Sorge, F., “Local and Global Anisotropy in the Speed of Light”, in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics“, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003).

    Google Scholar 

  18. Also, Weber, T. “Some Elementary Relativistic Considerations of the Time and Geometry of Rotating Reference Frames”, in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics“, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003).

    Google Scholar 

  19. See, for example, Bergia, S., and Guidone, M., “Time on a Rotating Platform and the One-Way Speed of Light”, Found. Phys. Lett., 11, 549–560 (Dec 1998).

    Article  MathSciNet  Google Scholar 

  20. Also, refs. [11] and [18]

    Google Scholar 

  21. Sagnac, M.G., Académie des sciences–Comptes rendus des séances, 157, 708–718 (1913); “Effet tourbillonnaire optique. La circulation de l’éther lumineux dans un interférographe tournant”, Journal de Physique Théorique et Appliquée, Paris, Sociète française de physique, Series 5, Vol 4 (1914), 177–195.

    Google Scholar 

  22. Dufour, A. et Prunier, F., “Sur l’observation du phénomène de Sagnac avec une source éclairante non entraînée”, Académie des sciences–Comptes rendus des séances, 204, 1322–1324 (3 May 1937); “Sur un Déplacement de Franges Enregistre sur une Plate-forme en Rotation Uniforme”, Le Journal de Physique et Le Radium, serie VIII, T. III, No 9, 153–161 (Sept 1942).

    Google Scholar 

  23. See other citations in E.J. Post, “Sagnac effect,” Mod. Phys. 39, 475–493 (1967).

    Google Scholar 

  24. Dresden, M., and Yang, C.N., “Phase shift in a rotating neutron or optical interferometer”, Phys. Rev. D. 20, 1846–1848 (15 Oct 1979 ).

    Google Scholar 

  25. Mashoon, B., Neutze, R., Hannam, M., Stedman, G.E., “Observable frequency shifts via spin-rotation coupling”, Phys. Lett. A, 249, 161–166 (1998). The authors consider the Sagnac effect to be a “manifestation of the coupling of orbital angular momentum of a particle.. to rotation”. For a wave this perturbation in the Hamiltonian induces a “frequency perturbation… [which]… recovers the Sagnac phase shift”. Again, correct arrival and departure times are not predicted by this approach.

    Google Scholar 

  26. Weber, T.A., “Measurements on a rotating frame in relativity, and the Wilson and Wilson experiment,” Am. J. Phys. 65, 946–953 (Oct 1997).

    Article  ADS  Google Scholar 

  27. Ref. [19].

    Google Scholar 

  28. Rizzi, G., and Tartaglia, A., “Speed of Light on Rotating Platforms”, Found. Phys. 28(11), 1663 (Nov 1998); “On Local and Global Measurements of the Speed of Light on Rotating Platforms”, Found. Phys. Lett. 12, 179–186 (April 1999).

    Article  MathSciNet  Google Scholar 

  29. Rizzi, G., and Ruggiero, M.L., “Space Geometry of Rotating Platforms: An Operational Approach”, Found. Phys. (in press), gr-qc/0207104.

    Google Scholar 

  30. Cranor, M.B., Heider, E.M., Price, R.H., “A circular twin paradox”, Am. J. Phys. 68, 1016–1020 (Nov 2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Anandan, J., “Sagnac effect in relativistic and nonrelativistic physics”, Phys. Rev. D 24, 338–346 (15 July 1981 ).

    Google Scholar 

  32. Peres, A., “Synchronization of clocks in a rotating frame”, Phys Rev D, 18, 2173–2174 (15 Sept 78).

    Google Scholar 

  33. Dieks, D., “Time in special relativity and its philosophical significance”, Eur. J. Phys. 12, 253–259 (1991).

    Article  Google Scholar 

  34. See ref. [1] for details.

    Google Scholar 

  35. Brillet, A., and Hall, J.L., “Improved laser test of the isotropy of space,” Phys. Rev. Lett., 42, 549–552 (1979).

    Article  ADS  Google Scholar 

  36. Ashby, N., “Relativistic Effects in the Global Positioning System”, 15 th Intl.Conf.Gen.Rel. and Gravitation, Pune, India (Dec 15–21, 1997), available at http://www.colorado.edu/engineering/GPS/Papers/RelativityinGPS.ps. See pp. 5–7.

  37. Ashby, N., “Relativity and the Global Positioning System”, Phys. Today, May 2002, 41–47. See pg 44.

    Google Scholar 

  38. The texts and article listed below are among those that discuss physical vector and tensor components (the values one measures in experiment) and the relationship between them and coordinate components (the mathematical values that depend on the generalized coordinate system being used.) D. Savickas, “Relations between Newtonian Mechanics, general relativity, and quantum mechanics”, Am. J. Phys., 70, 798–806;

    Google Scholar 

  39. I.S. Sokolnikoff, Tensor Analysis, Wiley Sons (195 1) pp. 8, 122–127, 205;

    Google Scholar 

  40. G.E. Hay, Vector and Tensor Analysis, Dover (1953) pp 184–186;

    Google Scholar 

  41. A. J. McConnell, Application of Tensor Analysis, Dover (1947) pp. 303–311;

    Google Scholar 

  42. Carl E. Pearson, Handbook of Applied Mathematics, Van Nostrand Reinhold (1983 2nd ed.), pp. 214–216;

    Google Scholar 

  43. Murry R. Spiegel, Schaum’s Outline of Vector Analysis, Schaum, pg. 172;

    Google Scholar 

  44. Robert C. Wrede, Introduction to Vector and Tensor Analysis, Dover (1972), pp. 234–235.

    Google Scholar 

  45. Malvern, L.E., Introduction to the Mechanics of a Continuous Medium Prentice-Hall, Englewood Cliffs, New Jersey (1969). See Appendix I, Sec. 5, pp. 606–613.

    Google Scholar 

  46. Fung, Y.C., Foundations of Solid Mechanics Prentice-Hall, Inc., Englewood Cliffs, NJ (1965). See pp. 52–53 and 111–115. Eringen, A.C., Nonlinear Theory of Continuous Media, McGraw-Hill, NY (1962). pp. 437–439.

    Google Scholar 

  47. Chung, T.J., Continuum Mechanics, Prentice Hall, Inc., Englewood Cliffs, NJ ( 1988. pp. 40–53, 246–251.

    Google Scholar 

  48. See ref. [8].

    Google Scholar 

  49. Physical components are introduced in ref. [8] on pg. 37, and used in many places throughout the text, though surprisingly, the relation between physical and coordinate components is not derived. It is used, however. See, for example, physical velocity components found in equation (31.5) on pg. 821.

    Google Scholar 

  50. Klauber, R.D., “Physical components, coordinate components, and the speed of light”, gr-qc/0105071;

    Google Scholar 

  51. Langevin, P., “Théorie de l’expérience de Sagnac”, Académie des sciences - Comptes rendus des séances, 173, 831–834 (1921); “Relativité–Sur l’expérience de Sagnac”, Académie des sciences - Comptes rendus des séances, 205, 304–306 (2 Aug 1937.)

    Google Scholar 

  52. Klauber, R.D., “New perspectives on the relatively rotating disk and nontime-orthogonal reference frames”, Found. Phys. Lett. 11405–443 (1998). qr-qc/0103076.

    Google Scholar 

  53. Klauber, R.D., “Relativistic Rotation in the Large Radius, Small Angular Velocity Limit”, gr-qc/0209025.

    Google Scholar 

  54. Klauber, R.D., “Derivation of the General Case Sagnac Result using Nontime-orthogonal Analysis”, (in press) Found. Phys. Lett. (Oct 2003), grqc/0206033.

    Google Scholar 

  55. Klauber, R.D., “Analysis of the Anomalous Brillet and Hall Experimental Result”, gr-qc/0210106.

    Google Scholar 

  56. Klauber, R.D., “Non-time-orthogonality, gravitational orbits and Thomas precession”, gr-qc/0007018

    Google Scholar 

  57. Selleri, F., “Noninvariant One-Way Velocity of Light”, Found. Phys. 26, 641–664 (May 1996); “Noninvariant One-Way Speed of Light and Locally Equivalent Reference Frames”, Found. Phys. Lett. 10, 73–83 (1997); “Space, Time, and Their Transformations”, Chinese J. Sys. Eng. Elect. 6, 25–44 (1995); “The Relativity Principle and the Nature of Time”, Found. Phys. 27, 1527–1548 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  58. Will, C. M., “Clock synchronization and isotropy of the one-way speed of light”, Phys Rev. D, 45, 403–411 (15 Jan 1992 ).

    Google Scholar 

  59. Haugan, M.P., and Will, C.M., “Modern Tests of Special Relativity”, Phys. Today, May 1987, 69–76.

    Google Scholar 

  60. Miller, D.C., “The Ether-Drift Experiment and the Determination of the Absolute Motion of the Earth”, Rev. Mod. Phys. 3, 203–242 (July 1933).

    Article  ADS  Google Scholar 

  61. Silvertooth, E.W., “Motion through the ether”, Elect. Wireless World, May 1989, 437–438; “Special Relativity”, Nature 322, 590 (Aug 1985); “Experimental detection of the ether”, Spec. Sci. Tech. 10, 3–7. Silver-tooth, E.W., and Whitney, C.K., “A New Michelson-Morley Experiment”, Phys. Essays, 5, 82–89 (1992).

    Article  ADS  Google Scholar 

  62. Marinov, S., “The Experimental Measurement of the One-Way Light Velocity and its Possibilities for Absolute Velocity Measurement”, Spec. Sci. Tech. 3, 57–82 (1980); See Maddox, J., “Stefan Marinov wins friends”, Nature 316, 209 (18 July 1985 ).

    Google Scholar 

  63. Tobar, M.E., Hartnett, J.G., Anstie, J.D., “Proposal for a new Michelson-Morley experiment using a single whispering mode resonator”, Phys. Lett. A., 300, 33–39 (22 July 2002 ).

    Google Scholar 

  64. Wolf, P., Bize, S., Clairon, A., Luiten, A.N. Gantarelli, G., Tobar, M.E., “Test of relativity using a microwave resonator”, gr-qc/0210049 (Oct 2002).

    Google Scholar 

  65. Michelson, A.A., and Morley, E.W., Am. J. Sci. 34, 333 (1887).

    Google Scholar 

  66. Wilson, M., and Wilson, H.A., “On the electric effect of rotating a magnetic insulator in a magnetic field”, Proc.R. Soc. London, SerA 89, 99–106 (1913).

    Article  Google Scholar 

  67. Hertzberg, J.B., Bickman, S.R., Hummon, M.T., Krause, D., Jr., Peck, S.K. and Hunter, L.R., “Measurement of the relativistic potential difference across a rotating magnetic dielectric cylinder”, Am J. Phys. 69, 648–654 (June 2001).

    Article  ADS  Google Scholar 

  68. Burrows, M.L., “Comment on ‘Maxwell’s equations in a rotating medium: Is there a problem?,’ by G. N. Pellegrini and A. R. Swift”, Am. J. Phys. 65, 929–931 (1997); Klauber, R., “Generalized Tensor Analysis Method and the Wilson and Wilson Experiment”, gr-qc/0107035.

    Google Scholar 

  69. Joos, V.G., Ann. Phys. 7 (4), 385–407 (1930)

    Article  Google Scholar 

  70. Kennedy, R.J., and Thorndike, E.M., “Experimental Establishment of the Relativity of Time”, Phys Rev. 42,400–418 (1 Nov 1932 ).

    Google Scholar 

  71. Ives, H.E. and Stilwell, G.R., “An Experimental Study of the Rate of a Moving Atomic Clock”, Jour. Opt. Soc. Am., 28, 215–226 (July 1938); “An Experimental Study of the Rate of a Moving Atomic Clock II”, Jour. Opt. Soc. Am., 31, 369–374 (May 1941).

    Article  ADS  Google Scholar 

  72. There may not be a difference between the NTO and SRT predictions for this experiment, and even with sufficient accuracy, the test might not be capable of discerning between the two approaches. Significant analysis would be required to answer this question.

    Google Scholar 

  73. Cedarholm, J.P., Bland, G.F., Havens, B.L., and Townes, C.H., “New Experimental Test of Special Relativity”, Phys Rev. Lett., 1, 342–343 (1 Nov 1958 ).

    Google Scholar 

  74. Hughes, V.W., Robinson, H.G., Beltran-Lopez, V., Phys Rev Lett. 4, 342 (1960); Dreve, R.W.P., Philos. Mag. 6, 683 (1961).

    Article  Google Scholar 

  75. Jaseva, T.S., Javan, A., Murray, J., and Townes, C.H., “Test of Special Relativity or of the Isotropy of Space by Use of Infrared Masers”, Phys. Rev. 133(5A), A1221–A1225 (2 March 1964 ).

    Google Scholar 

  76. Champeney, D.C., Issak, G.R., and Khan, A.M., “An ‘Aether Drift’ Experiment Based on the Mössbauer Effect”, Phys. Lett., 7, 241–243 (1 Dec 1963 )

    Google Scholar 

  77. Turner, K.C., and Hill, H.A., “New Experimental Limit on Velocity-Dependent Interactions of Clocks and Distant Matter”, Phys. Rev., 134(1B), B252–B256 (13 April 1964 ).

    Google Scholar 

  78. Hafele, J.C., and Keating, R.E., “Around-the-World Atomic Clocks: Predicted Relativistic Time Gains”, Science 177, 166–167 (14 July 1972); “Around-the-World Atomic Clocks: Observed Relativistic Time Gains”, Science 177, 168–170 (14 July 1972 );

    Google Scholar 

  79. Vessot, R.F.C., and Levine, M.W., “A Test of the Equivalence Principle Using a Space-Borne Clock”, Gen. Rel. and Grav. 10, 181–204 (1979).

    Article  ADS  Google Scholar 

  80. Vessot, R.F.C., Levine, M.W., Mattison, E.M., Blomberg, E.L., Hoffman, T.E., Nystrom, G.U., Farrell, B.F., Decher, R., Eby, P.B., Baugher, C.R., Watts, J.W., Teuber, D.L., and Wills, F.D., “Test of Relativistic Gravitation with a Space-Born Hydrogen Maser”, Phys Rev Lett. 45, 2081–2084 (29 Dec 1980 ).

    Google Scholar 

  81. Byl, J., Sanderse, M., van der Kamp, W., “Simple first-order test of special relativity”, Am. J. Phys. 53, 43–45 (Jan 1985).

    Article  ADS  Google Scholar 

  82. Klauber, R.D., “Non-time-orthogonality and Tests of Special Relativity”, gr-qc/0006023.

    Google Scholar 

  83. Prestage, J.D., Bollinger J.J., Itano, W.M., Wineland, D.J., “Limits for Spatial Anisotropy by Use of Nuclear-Spin-Polarized 9Be+ Ions”, Phys. Rev. Lett. 54, 2387 (1985).

    Article  ADS  Google Scholar 

  84. Kaivola, M., Poulsen, O., Riis, E., “Measurement of the Relativistic Doppler Shift in Neon”, Phys. Rev. Lett. 54, 255–258 (28 Jan 1985 ).

    Google Scholar 

  85. Riis, E., Andersen, L.A., Bjerre, N., Poulsen, O., Lee, S.A.,, Hall, J.L., “Test of the Isotropy of the Speed of Light Using Fast-Beam Laser Spectroscopy”, Phys. Rev. Lett. 60, 81–84 (11 Jan 1988); Bay, Z., and White, J.A., “Comment on ‘Test of the Isotropy of the Speed of Light Using Fast-Beam Laser Spectroscopy’, Phys. Rev. Lett. 62, 841 (13 Feb 1989); Riis et al, “Reply”, Phys. Rev. Lett. 62, 841 (13 Feb 1989 ).

    Google Scholar 

  86. With the beam aligned north-south, as it was in the experiment, there is definitely no difference between the NTO and SRT predictions. For an east-west alignment, there may, or may not be a difference. Significant analysis would be required to answer this question.

    Google Scholar 

  87. Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J., Fortson, E.N., “New Limits on Spatial Anisotropy from Optically Pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125 (1986).

    Article  ADS  Google Scholar 

  88. Krisher, T.P., Maleki, L., Lutes, G.F., Primas, L.E., Logan, R.T., Anderson, J.D., and Will, C.M., “Test of the Isotropy of the One-way Speed of Light Using Hydrogen-maser Frequency Standards”, Phys Rev D 42, 731–734 (15 July 1990 ).

    Google Scholar 

  89. Hils, D., and Hall, J.L., “Improved Kennedy-Thorndike Experiment to Test Special Relativity”, Phys. Rev. Lett., 64, 1697–1700 (9 April 1990 ).

    Google Scholar 

  90. Wolf, P., and Petit, G., “Satellite Test of Special Relativity Using the Global Positioning System”, Phys. Rev. A. 56, 4405–4409 (Dec 1997).

    Article  ADS  Google Scholar 

  91. Braxmaier, C., Müller, H., Pradl, O., Mlynek, J., Peters, A., “Test of Relativity Using a Cryogenic Optical Resonator”, Phys. Rev. Lett. 88, 010401–1 to 010401–4 (7 Jan 2002 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klauber, R.D. (2004). Toward a Consistent Theory of Relativistic Rotation. In: Rizzi, G., Ruggiero, M.L. (eds) Relativity in Rotating Frames. Fundamental Theories of Physics, vol 135. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0528-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0528-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6514-8

  • Online ISBN: 978-94-017-0528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics