Advertisement

Animal models of ultraviolet radiation-induced skin cancer

  • Vivienne E. Reeve
  • Ronald D. Ley
Chapter
Part of the Cancer Prevention — Cancer Causes book series (CPCC, volume 3)

Abstract

Solar ultraviolet (UV) radiation induces a number of pathologic conditions in mammals including erythema, edema, sunburn cell formation, immunosuppression, skin cancer and cataracts. Animal models have been invaluable in the study of the underlying mechanisms involved in the induction of these pathologies. Furthermore, animal-based studies have been very useful in determining efficacies of preventive and therapeutic modalities. As cancer formation is the result of an interactive series of events, the use of whole animals is essential to the study of this process. The following presents the results of animal studies that have provided significant understanding of photocarcinogenesis.

Keywords

mouse wavelength dependence DNA damage immune suppression chemoprevention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein-Szanto AJ, Silvers WK, Mintz B (1994) Ultraviolet radiation-induced malignant skin melanoma in melanoma-susceptible transgenic mice. Cancer Res 17: 4569–4572.Google Scholar
  2. 2.
    Broome Powell M, Gause PR, Hyman P, et al. (1999) Induction of melanoma in Tpras transgenic mice. Carcinogenesis 20: 1747–1753.CrossRefGoogle Scholar
  3. 3.
    Noonan FP, Recio JA, Takayama H, et al. (2001) Neonatal sunburn and melanoma in mice. Nature 413: 271–272.PubMedCrossRefGoogle Scholar
  4. 4.
    Li G, Ho VC, Berean K, Tron VA (1995) Ultraviolet radiation induction of squamous cell carcinomas in p53 transgenic mice. Cancer Res 55: 2070–2074.PubMedGoogle Scholar
  5. 5.
    Jiang W, Ananthaswamy HN, Muller HK, Kripke ML (1999) p53 protects against skin cancer induction by UV-B radiation. Oncogene 18: 4247–4253.Google Scholar
  6. 6.
    De Vries A, Berg RJ, Wijnhoven S, et al. (1998) XPA-deficiency in hairless mice causes a shift in skin tumor types and mutational target genes after exposure to low doses of U.V.B. Oncogene 16: 2205–2212.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Steeg H, Mullenders LH, Vijg J (2000) Mutagenesis and carcinogenesis in nucleotide excision repair-deficient XPA knock out mice. Mutat Res 450: 167–180.PubMedCrossRefGoogle Scholar
  8. 8.
    Berg RJ, Rebel H, van der Horst GT, et al. (2000) Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice. Cancer Res 60: 2858–2863.PubMedGoogle Scholar
  9. 9.
    Kusewitt DF, Ley RD (1996) Animal models of melanoma. Cancer Surveys 26: 35–70.PubMedGoogle Scholar
  10. 10.
    Atillasoy ES, Seykora JT, Soballe PW, et al. (1998) UVB induces atypical melanocytic lesions and melanoma in human skin. Amer J Path 152: 1179–1186.PubMedGoogle Scholar
  11. 11.
    Green A, Neale R, Kelly R, et al. (1996) An animal model for human melanoma. Photochem Photobiol 64: 577–580.PubMedCrossRefGoogle Scholar
  12. 12.
    Ley RD, Applegate LA, Padilla RS, Stuart TD (1989) Ultraviolet radiation-induced malignant melanoma in Monodelphis domestica. Photochem Photobiol 50: 105.CrossRefGoogle Scholar
  13. 13.
    Setlow RB, Woodhead AD, Grist E (1989) Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid. Proc Natl Acad Sci USA 86: 8922–8926.PubMedCrossRefGoogle Scholar
  14. 14.
    De Gruijl FR, Henricus JCM, Sterenborg P, et al. (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53: 53–60.PubMedGoogle Scholar
  15. 15.
    Parrish JA, Jaenicke KF, Anderson RR (1982) Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 36: 187–191.PubMedCrossRefGoogle Scholar
  16. 16.
    Ley RD, Peak MJ, Lyon L (1983) Induction of pyrimidine dimers in epidermal DNA of hairless mice by UV-B: An action spectrum. J Invest Dermatol 80: 188–189.PubMedCrossRefGoogle Scholar
  17. 17.
    Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90: 6666–6670.PubMedCrossRefGoogle Scholar
  18. 18.
    Ley RD (2001) Dose Response for Ultraviolet Radiation A-Induced Focal Melanocytic Hyperplasia and Non-melanoma Skin Tumors in Monodelphis domestica. Photochem Photobiol 73: 20–23.CrossRefGoogle Scholar
  19. 19.
    Robinson ES, Hubbard GB, Colon G, Vandeberg JL (1998) Low-dose ultraviolet exposure early in development can lead to widespread melanoma in the opossum model. Int J Exp Path 79: 235–244.Google Scholar
  20. 20.
    Robinson ES, Hill RH, Kripke ML, Setlow RB (2000) The Monodelphis melanoma model: Initial report on large ultraviolet A exposures of suckling young. Photochem Photobiol 71: 743–746.PubMedCrossRefGoogle Scholar
  21. 21.
    Black HS, de Gruijl FR, Forbes PD, et al. (1997) Photocarcinogenesis: an overview. J Photochem Photobiol B. 40: 29–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18: 2379–2384.PubMedCrossRefGoogle Scholar
  23. 23.
    de Gruijl FR, Berg RJ (1998) In situ molecular dosimetry and tumor risk: UV-induced DNA damage and tumor latency time. Photochem Photobiol 68: 555–560.PubMedCrossRefGoogle Scholar
  24. 24.
    Mitchell DL, Greinert R, De Gruijl FR, et al. (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res 59: 2875–2884.PubMedGoogle Scholar
  25. 25.
    Mitchell DL, Byrom M, Chiarello S, Lowery MG (2001) Attenuation of DNA damage in the dermis and epidermis of the albino hairless mouse by chronic exposure to ultraviolet-A and –B radiation. Photochem Photobiol 73: 83–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Ley RD (1993) Photoreactivation in humans (Commentary). Proc Natl Acad Sci USA 90: 4337.PubMedCrossRefGoogle Scholar
  27. 27.
    Applegate LA, Ley RD (1987) Excision repair of pyrimidine dimers in marsupial cells. Photochem Photobiol 45: 241–245.PubMedCrossRefGoogle Scholar
  28. 28.
    van Steeg H, Kraemer KH (1999) Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Molec Med Today 5: 86–94.CrossRefGoogle Scholar
  29. 29.
    Selivanova G, Wiman KG (1995) p53: A cell cycle regulator activated by DNA damage. Adv Cancer Res 66: 143–180.Google Scholar
  30. 30.
    Ziegler A, Leffell DJ, Kunala S, et al. (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90: 4216–4220.PubMedCrossRefGoogle Scholar
  31. 31.
    Weiss J, Schwechheimer K, Cavenee WK, et al. (1993) Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 54: 693–699.PubMedCrossRefGoogle Scholar
  32. 32.
    Fisher MS, Kripke ML (1982) Suppressor T lymphocytes control the development of primary skin cancers in UV-irradiated mice. Science 216: 1133–1134.PubMedCrossRefGoogle Scholar
  33. 33.
    Aberer W, Schuler G, Stingl G, Honigsman H, Wolff K (198 1) UV light depletes surface markers of Langerhans cells. J Invest Dermatol 76: 202–210.Google Scholar
  34. 34.
    Noonan FP, De Fabo EC (1990) Ultraviolet B dose response curves for local and systemic immunosuppression are identical. Photochem Photobiol 52: 801–810.PubMedCrossRefGoogle Scholar
  35. 35.
    Goettsch W, Garssen J, Deijns A, De Gruijl FR, Van Loveren H (1994) UVB exposure impairs resistance to infection by Trichinella spiralis. Environ Health Perspect 102: 298–301.PubMedCrossRefGoogle Scholar
  36. 36.
    Yasumoto S., Hayashi Y, Aurelian L (1987) Immunity to Herpes simplex virus Type 2: Suppression of virus induced immune responses in ultraviolet B-irradiated mice. J Immunol 139: 2788–2793.PubMedGoogle Scholar
  37. 37.
    Jeevan A, Brown E, Kripke ML (1995) UV and infectious diseases. In: Krutmann J, Elmets CA, eds. Photoimmunology. Oxford: Blackwell Sci., pp. 153–163.Google Scholar
  38. 38.
    Cooper KD, Oberhelman L, Hamilton TA, et al. (1992) UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion. Proc Natl Acad Sci USA 89: 8497–8501.PubMedCrossRefGoogle Scholar
  39. 39.
    Sheil AGR, Mahoney JF, Horvath JS, et al. (1981) Cancer following successful cadaveric donor renal transplant. Transplantation Proc XII: 733–735.Google Scholar
  40. 40.
    Yoshikawa T, Rae V, Bruins-Slot W, Van den Berg JW, Taylor JR, Streilein JW (1990) Susceptibility to effects of UV radiation on induction of contact hypersensitivity as a risk factor for skin cancer. J Invest Dermatol 95: 530–536.PubMedCrossRefGoogle Scholar
  41. 41.
    O’Dell BL, Jessen RT, Becker LE, Jackson RT, Smith EB (1980) Diminished immune response in sun-damaged skin. Arch Dermatol 116: 559–561.PubMedCrossRefGoogle Scholar
  42. 42.
    Morison WL, Bucana C, Hashem N, Kripke ML, Cleaver JE, German JL (1985) Impaired immune function in patients with xeroderma pigmentosum. Cancer Res 45: 3929–3931.PubMedGoogle Scholar
  43. 43.
    De Fabo EC, Kripke ML (1980) Wavelength dependence and dose-rate independence of UV radiation-induced immunologic unresponsiveness of mice to a UV-induced fibrosarcoma. Photochem Photobiol 32: 183–188.PubMedCrossRefGoogle Scholar
  44. 44.
    Vink AA, Yarosh DB, Kripke ML (1995) Chromophore for UV-induced immunosuppression: DNA. Photochem Photobiol 63: 383–386.CrossRefGoogle Scholar
  45. 45.
    Applegate LA, Ley RD, Alcalay J, Kripke ML (1989) Identification of the molecular target for the suppression of contact hypersensitivity by ultraviolet radiation. J Exp Med 170: 1117–1131.PubMedCrossRefGoogle Scholar
  46. 46.
    De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by UV radiation in vivo. 1. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 157: 84–98.CrossRefGoogle Scholar
  47. 47.
    Norval M, Simpson TJ, Ross JA (1989) Urocanic acid and immunosuppression. Photochem Photobiol 50: 267–271.PubMedCrossRefGoogle Scholar
  48. 48.
    Norval M, Gibbs NK, Gilmour J (1995) The role of urocanic acid in UV-induced immunosuppression: Recent Advances (1992–1994). Photochem Photobiol 62: 209–217.PubMedCrossRefGoogle Scholar
  49. 49.
    Hart PH, Grimbaldeston MA, Swift GJ, Hosszu EK, Finlay-Jones JJ (1999) A critical role for dermal mast cells in cis-urocanic acid-induced systemic suppression of contact hypersensitivity responses in mice. Photochem Photobiol 70: 807–812.PubMedCrossRefGoogle Scholar
  50. 50.
    Chung H, Burnham DK, Robertson B, Roberts LK, Daynes RD (1986) Involvement of prostaglandins in the immune alteration caused by the exposure of mice to ultraviolet radiation. J Immunol 137: 2478–2484.PubMedGoogle Scholar
  51. 51.
    Pentland AP, Mahoney M, Jacobs C, Holtzman J (1990) Enhanced prostaglandin synthesis after ultraviolet injury is mediated by endogenous histamine stimulation. A mechanism for irradiation erythema. J Clin Invest 86: 556–574.CrossRefGoogle Scholar
  52. 52.
    Jaksic A, Finlay-Jones J, Watson CJ, Spencer LK, Santucci I, Hart PH (1995) Cis-urocanic acid synergizes with histamine for increased PGE2 production by human keratinocytes: Link to indomethacin-inhibitable UVB-induced immunosuppression. Photochem Photobiol 61: 303–309.Google Scholar
  53. 53.
    Ullrich S (1996) Does exposure to UV radiation induce a shift to a Th-2-like immune reaction? (Review) Photochem Photobiol 64: 254–258.PubMedCrossRefGoogle Scholar
  54. 54.
    Nishimura N, Tohyama C, Satoh M, Nishimura H, Reeve VE (1999) Defective immune response and severe skin damage following UVB irradiation in interleukin-6-deficient mice. Immunology 97: 77–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Moodycliffe AM, Kimber I, Norval M (1994) Role or tumour necrosis factor-alpha in ultraviolet B light-induced dendritic cell migration and suppression of contact hypersensitivity. Immunology 81: 79–84.PubMedGoogle Scholar
  56. 56.
    Schwarz A, Grabbe S, Grosse-Heitmeyer K, et al. (1998) Ultraviolet light-induced immune tolerance is mediated via the Fas/Fas-ligand system. J Immunol 160: 4262–4270.PubMedGoogle Scholar
  57. 57.
    Krutmann J, Grewe M (1995) Involvement of cytokines, DNA damage, and reactive oxygen intermediates in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression. J Invest Dermatol 105 (S): 67–70.CrossRefGoogle Scholar
  58. 58.
    Nakamura T, Pinnell SR, Darr D et al. (1997) Vitamin C abrogates the deleterious effects of UVB radiation on cutaneous immunity by a mechanism that does not depend on TNFa. J Invest Dermatol 109: 20–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Yuen KS, Halliday GM (1997) Alpha-tocopherol, an inhibitor of epidermal lipid peroxidation, prevents ultraviolet radiation from suppressing the skin immune system. Photochem Photobiol 65: 587–592.PubMedCrossRefGoogle Scholar
  60. 60.
    Reeve VE, Bosnic M, Rozinova E (1993) Carnosine (ß-alanylhistidine) protects from the suppression of contact hypersensitivity by ultraviolet B (280–320 nm) radiation or by cisurocanic acid. Immunology 78: 99–104.PubMedGoogle Scholar
  61. 61.
    Reeve VE, Nishimura N, Bosnic M, Michalska AE, Khoo KHA (2000) Lack of metallothionein-I and –II exacerbates the immunosuppressive effects of UVB. Immunology 100: 399–404.PubMedCrossRefGoogle Scholar
  62. 62.
    Steenvoorden D, Vanhenegouwen G (1998a) Glutathione synthesis is not involved in protection by N-acetylcysteine against UVB-induced systemic immunosuppression in mice. Photochem Photobiol 68: 97–100.PubMedGoogle Scholar
  63. 63.
    Katiyar SK, Elmets CA, Agarwal R, Mukhtar H (1995) Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem Photobiol 62: 855–861.PubMedCrossRefGoogle Scholar
  64. 64.
    Steerenberg PA, Garssen J, Dortant P, et al. (1998) Protection of UV-induced suppression of skin contact hypersensitivity–a common feature of flavonoids after oral administration. Photochem Photobiol 67: 456–461.PubMedCrossRefGoogle Scholar
  65. 65.
    Reeve VE, Bosnic M, Rozinova E, Boehm-Wilcox C, (1993a) A garlic extract protects from ultraviolet B (280–320 nm) radiation-induced suppression of contact hypersensitivity. Photochem Photobiol 58: 813–817.PubMedCrossRefGoogle Scholar
  66. 66.
    Reeve VE, Tyrrell RM, (1999) Heme oxygenase induction mediates the photoimmunoprotective effect of UVA radiation in the mouse. Proc Natl Acad Sci USA 96: 9317–9321.PubMedCrossRefGoogle Scholar
  67. 67.
    Zak-Prelich M, Norval M, Venner TJ, et al. (2001) cis-Urocanic acid does not induce the expression of immunosuppressive cytokines in murine keratinocytes. Photochem Photobiol 73: 238–244Google Scholar
  68. 68.
    International Agency for Research on Cancer Expert Group (2001) Sunscreens. IARC Handbooks of Cancer Prevention, Vol. 5. Lyon, France: IARC Press, p. 149.Google Scholar
  69. 69.
    Black HS, Lenger W, Phelps AW, Thornby JI (1983) Influence of dietary lipid upon ultraviolet light carcinogenesis. Nutr Cancer 5: 59–68.PubMedCrossRefGoogle Scholar
  70. 70.
    Reeve VE, Bosnic M, Boehm-Wilcox C (1996) Dependence of photocarcinogenesis and photoimmunosuppression in the hairless mouse on dietary polyunsaturated fat. Cancer Letts 108: 271–279.CrossRefGoogle Scholar
  71. 71.
    Cope RB, Bosnic M, Boehm-Wilcox C, Mohr D, Reeve VE (1996) Dietary butter protects against ultraviolet radiation-induced suppression of contact hypersensitivity in Skh:HR-1 hairless mice. J Nutr 126: 681–692.PubMedGoogle Scholar
  72. 72.
    Black HS, Okotie-Eboh G, Gerguis J, Urban JI, Thornby JI (1995a) Dietary fat modulates immunoresponsiveness in UV-irradiated mice. Photochem Photobiol 62: 964–969.PubMedCrossRefGoogle Scholar
  73. 73.
    Orengo IF, Black HS, Kettler AH, Wolf JE Jr. (1989) Influence of dietary menhaden oil upon carcinogenesis and various cutaneous responses to ultraviolet radiation. Photochem Photobiol 49: 71–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Reeve VE, Matheson MJ, Bosnic M, Boehm-Wilcox C (1995) The protective effect of indomethacin on photocarcinogenesis in the hairless mouse. Cancer Letts 95: 213–219.CrossRefGoogle Scholar
  75. 75.
    Fischer SM, Lo HH, Gordon GB, et al. (1999) Chemopreventive activity of celecoxib, a specific cyclooxygenase-1 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol Carcinogenesis 25: 231–240.CrossRefGoogle Scholar
  76. 76.
    Steenvoorden DPT, van Henegouwen GMJB (1997) The use of endogenous antioxidants to improve photoprotection (Review). J Photochem Photobiol B 41 (1–2): 1–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Wei HC, Cai QY, Rahn RO (1996) Inhibition of UV light-and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 17: 73–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Wei H., Barnes S, Wang Y (1996a) The inhibitory effect of genistein on a tumour promoter c -fos and c -jun expression in mouse skin. Oncol Rep 3: 125–128.PubMedGoogle Scholar
  79. 79.
    Isoherranen K, Punnonen K, Jansen C, Uotila P (1999) Ultraviolet irradiation induced cyclooxygenase-2 expression in keratinocytes. Br J Dermatol 140: 1017–1022.PubMedCrossRefGoogle Scholar
  80. 80.
    Steerenberg PA, Garssen J, Dortant P et al (1997) Quercetin prevents UV-induced local immunosuppression, but does not affect UV-induced tumor growth in SKH-1 hairless mice. Photochem Photobiol 65: 736–744.PubMedCrossRefGoogle Scholar
  81. 81.
    Birt DF, Mitchell D, Gold B, Pour P, Pinch HC (1997) Inhibition of ultraviolet light induced skin carcinogenesis in Skh-1 mice by apigenin, a plant flavonoid. Anticancer Res 17: 85–91.PubMedGoogle Scholar
  82. 82.
    Lepley DM, Pelling JC (1997) Induction of p21/WAF1 and G(1) cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinogenesis 19: 74–82.CrossRefGoogle Scholar
  83. 83.
    Widyarini S, Spinks N, Husband AJ, Reeve VE (2001) Isoflavone derivatives from red clover (Trifolium pratense) protect from inflammation and immune suppression induced by UV radiation. Photochem Photobiol 74: 465–470.PubMedCrossRefGoogle Scholar
  84. 84.
    Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89: 556–565.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang ZY, Agarwal R, Bickers DR, Mukhtar H (1991) Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols. Carcinogenesis 12: 1527–1530.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang ZY, Huang M, Ferraro T, et al (1992) Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of Skh-1 mice. Cancer Res 52: 1162–1170.PubMedGoogle Scholar
  87. 87.
    Khan SG, Katiyar SH, Agarwal R, Mukhtar H (1992) Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to Skh-1 hairless mice: possible role in cancer chemoprevention. Cancer Res 52: 4050–4052.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Vivienne E. Reeve
    • 1
  • Ronald D. Ley
    • 2
  1. 1.Faculty of Veterinary ScienceUniversity of SydneyAustralia
  2. 2.Department of Cell Biology and PhysiologyUniversity of New Mexico, School of MedicineAlbuquerqueUSA

Personalised recommendations