A Multiscale Micromechanics Approach to Describe Environmental Effects on Surface Crack Initiation under Cyclic Loading

  • E. P. Busso
  • G. Cailletaud
  • S. Quilici
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


In this work, a multiscale mechanistic approach is employed to study the effects of casting-related porosities and environment on the initiation of surface cracks in single crystal superalloys under predominantly cyclic loading conditions. At the scale of the porosity (i.e. mesoscale), a micromechanics-based probabilistic formulation is relied upon to describe the initiation and growth of fatigue cracks from spherical defects. The effects of loading at the scale of the component (i.e. macroscale) and of the interaction of the void with a free surface on the mesoscopic stress variations within a loading cycle are quantified from detailed finite element analyses of a representative material volume element. The effect of a reduction in the volume fraction of the 7’ precipitate phase due to surface oxidation on the time-dependent notch stresses is analysed numerically using a crystallographic formulation for the single crystal which depends explicitly on the precipitate volume fraction at the microscale. The framework is then used to investigate the fatigue behaviour of a typical notched tensile bar.


Surface cracks superalloy single crystals oxidation effects porosity-induced damage multi-scale model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dumoulin, S., Busso, E.P., O’ Dowd, N.P and Allen, D.. Philosophical Magazine. In press.Google Scholar
  2. [2]
    Boubidi, P., PhD Thesis, Ecole des Mines de Paris, France, Dec. 2000.Google Scholar
  3. [3]
    Busso, E. P., O’Dowd, N. P., and Dennis, R. J., 2001a, Proc. Fifth IUTAM Symp. on Creep in Structures, S. Murakami and S. Ohno (eds.), pp. 41–50.Google Scholar
  4. [4]
    Martinez-Esnaola, J. M., Martin-Meizoso, A., Affeldt, E. E., Bennett, A. and Fuentes, M., 1997, Fatigue Fract. Engng. Mater. Struct., V. 20, 771.CrossRefGoogle Scholar
  5. [5]
    Andrieu, E., and Pineau, A., 1999, J. de Physique IV, V. 9, 3.CrossRefGoogle Scholar
  6. [6]
    Nusier, S. Q., Newaz, G. M., 1998, Engng Fract. Meck, 60, 577.CrossRefGoogle Scholar
  7. [7]
    Sfar, K., Aktaa, J., Munz, D., 2002, Mat. Sc. Eng. A, 333, 351.CrossRefGoogle Scholar
  8. [8]
    Busso, E. P., Meissonnier, F., and O’Dowd, N.P, 2000, J. Mechanics Physics Sol., V. 48, 2333.CrossRefGoogle Scholar
  9. [9]
    Beremin, F.M., Metall. Trans. A, 14, p. 2277.Google Scholar
  10. [10]
    Besson, J., Le Riche, R., Foerch, R. and Cailletaud, G., R.Eur.Elem.Fin. (1998), 7, 567–588.Google Scholar
  11. [11]
    Rieck, T., PhD Thesis, Technischen Hochschule Aachen, Germany, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • E. P. Busso
    • 1
  • G. Cailletaud
    • 2
  • S. Quilici
    • 2
  1. 1.Department of Mechanical EngineeringImperial College LondonUK
  2. 2.Centre des MateriauxEcole des Mines de ParisEvryFrance

Personalised recommendations