Multiscale Analysis of Dynamic Deformation in Monocrystals

  • M. A. Shehadeh
  • H. M. Zbib
  • T. Diaz de la Rubia
  • V. Bulatov
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


The dynamic deformation in FCC single crystals is investigated using a multiscale dislocation dynamic plasticity model. We examine the effect of strain rate, pulse duration, nonlinear elastic properties and crystal anisotropy on wave profiles and dislocation microstructures. The morphologies of the relaxed configurations of dislocations microstructures show formation deformation bands.

Key words

Dislocation Dynamics High Strain Rate Dynamic Plasticity Multiscale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clifton, R.G, 2000. Response of materials under dynamic loading. International Journal of Solids and Structures, 37: 105–113.CrossRefGoogle Scholar
  2. Cilfton R. J., Bathe, N, 1999. Bridging length scales in dynamic plasticity simulations. In: Furnish, M. D., Chhbildes, L. C., Hixson, R. S., (Eds.), shock Compression of Condensed Matter, Snowbird Utah.Google Scholar
  3. Coffey, C. S, 1992. Dislocation microscopic approach to shear band formation in crystalline solids during shock or impact. Shock Waves and High Strain Rate Phenomena in Materials, Meyers, M. A., Murr, L. E., Staudhammer, K. P., (Eds.), Marcel Dekker.Google Scholar
  4. Hayes, D., Hixson, R. S., McQueen, R.G, 1999. High Pressure Elastic Properties, Slid-Liquid Phase Boundary and Liquid Equation of State From Release Wave Measurements in Shock Loaded Copper. In: Furnish, M. D., Chhbildes, L. C., Hixson, R. S., (Eds.), shock Compression of Condensed Matter, 1999 June 27- July 2 in Snowbird Utah.Google Scholar
  5. Hirth J. P., Zbib, H. M., Lothe, J., 1998, Forces on high velocity dislocations. Modeling Simlu. Mater. Sci. Eng. 6, 165–169.Google Scholar
  6. Horstemeyer, M. F., Baskes, M. I., Godfrey, A., Hughes, D. A., 2000. A large deformation atomistic study examining crystal orientation effects on the stress strain relationship. International Journal of Plasticity. 18, 203–229.CrossRefGoogle Scholar
  7. Horstemeyer, M. F., Baskes, M. I., Plimpton, S. J., 2001. Length scale and time scale effects on the plastic flow of fee metals. Acta Mater. 49, 4363–4374.CrossRefGoogle Scholar
  8. Kadau, K., Germann, T. C., Lomdhal, P. S. Holian, B., 2002. Microscopic view of structural phase transitions induced by Shockwaves. Science. 296, 1681–1684.CrossRefGoogle Scholar
  9. Kalantar, D. H. et al. 2001. Laser driven high pressure, high strain-rate materials experiments In: 12th bienneial International Conference of the Aps Topical Group on Shock Compression of Condensed Matter, 24–29, in Atlanta, Georgia.Google Scholar
  10. Kanel, G. I., Razorenov, S. V , Baumung, K., Singer, J., 2001. Dynamic yield and tensile strength of aluminum single crystals at temperature up to the melting point. J. App. Phys. 90, 136–143.CrossRefGoogle Scholar
  11. Kuhlmann-Wilsdorf, D., 2001. Q: Dislocations structure-how far from equilibrium? A: Very close indeed. Material Science and Engineering, A315: 211–216CrossRefGoogle Scholar
  12. Loveridge-Smith, A., 2001. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales. Phys. Rev.Lett, 86(11), 2349–2352.CrossRefGoogle Scholar
  13. Mayer, G., 1992. New directions in research on dynamic deformation of materials. Shock Wave and High strain Rate Phenomena in Materials, M. Meyers, L. Murr, and K. Staudhammer, (Eds.) Marcel Dekker.Google Scholar
  14. Meyers, M. A., 1994. Dynamic Behavior of Materials, John Wiley & Sons, Inc.CrossRefGoogle Scholar
  15. Meyers, M. A., et al., 2001. Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper. In: Furnish, M. D., Thadhani, N. N., Horie, Y., (Eds.), shock Compression of Condensed Matter, Atlanta, Georgia.Google Scholar
  16. Mogilevskii, M. A., Bushnev L. S., 1990. Deformation structure development in Al and Cu single crystals on shock-wave loading up to 50–100 GPa. Combustion, Explosion, and Shock Waves. 26, 215–220.CrossRefGoogle Scholar
  17. Naser, S., 1992. Dynamic deformation and failure. Shock Wave and High strain Rate Phenomena in Materials, M. Meyers, L. Murr, and K. Staudhammer, (Eds.) Marcel Dekker.Google Scholar
  18. Rivas, J. M., Quinones, S. A., Murr, L. E., 1995. Hyper velocity impact cratering: microstructural characterization. Scripta Metallurgica et Materialia, 33(1), 101–107.CrossRefGoogle Scholar
  19. Smirnova J. A., Zhigilei L. V., Garrison B. J., 1999, A combined molescular dynamics and finite element method technique applied to laser induced pressure wave propagation. Computer Science Communications, 118, 11–16.Google Scholar
  20. Rhee, M., Zbib, H. M., Hirth, Ip., Huang, H. & de La Rubia, T.D., 1998. Models for long/short range interactions and cross slip in 3D dislocation simulation of Bcc single crystals. Modeling and simulations in Maters. Sei. & Eng. 467–492.Google Scholar
  21. Weertman, J., 1981. Moving dislocations in a shock front. Shock-Wave and High strain Rate Phenomena in Metals, M. Meyers, and L. Murr, (Eds.) Plenum press, NewYork,Google Scholar
  22. Wright, R. N., Mikkola, D. E., LaRouche, S., 1981. Short Duration Shock Pulses as a Tool to Study the Time Dependence of Plastic Deformation.” In: Meyers, M. A., Murr, L. E., (Eds.), Shock Waves and high Strain Rate Phenomena in Metals, Plenum, NewYork.Google Scholar
  23. Zbib, H. M., Rhee, M. & Hirth, J.P., 1998. On plastic deformation and dynamics of 3D dislocations. Int.J.Mech.Sci. 40, 113–127.CrossRefGoogle Scholar
  24. Zbib, H. M., Diaz de la Rubia, T., 2002. A multiscale model of plasticity. International Journal of Plasticity, 18, 1133–1163.CrossRefGoogle Scholar
  25. Zbib, H. M., Shehadeh, M., Khan, S.M, and Karami, G., 2003. Multiscale Dislocation Dynamics Plasticity. International Journal for Multiscale Computational Engineering.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. A. Shehadeh
    • 1
  • H. M. Zbib
    • 1
  • T. Diaz de la Rubia
    • 2
  • V. Bulatov
    • 2
  1. 1.School of mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Material Science and technology Division, Chemistry and Material Science Directorate, Mail Stop L-353Lawrence Livermore National LaboratoryUSA

Personalised recommendations