Skip to main content

What about the Yield Transformation Surface Determination (Austenite → Martensite) with The Measurement of Austenite and Martensite Lattice Parameters for some Shape Memory Alloys?

  • Conference paper
IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 114))

  • 446 Accesses

Abstract

Like in the plasticity theory, the prediction of phase transformation yield surfaces constitutes a key point in the modeling of polycrystalline shape memory alloys thermomechanical behavior. Generally in some micro-macro integration, the nature of the interface between austenite and twinned or untwinned martensite under stress free state and the choice of correspondance variants (CV) or habit plane variant (HPV) are determining for the explicit expression of the yield criterion. If the prediction of some copper-based alloys (interface between austenite and one single variant of martensite) and the Cu-Al-Ni for cubic to orthorhombic phase transformation (interface between austenite and twinned martensite) is fairly good, the prediction is not efficient for the important case of Ti-Ni (interface between austenite and twinned martensite with stress free state). The usual hypothesis consisting in neglecting the effect of stress on the interface geometrical configuration must be revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.F. Hane, T.W. Shield, “Microstructure in the cubic to monoclinic transition in Titanium-Nickel shape memory alloys”, Acta Mater., 47, 9, pp. 2603–2617,1999.

    Article  CAS  Google Scholar 

  2. M.S. Wechsler, D.S. Lieberman and T.A. Read, “On the theory of the formation of martensite”, Trans. AIME 197, pp. 1503–1515,1953.

    Google Scholar 

  3. J.M. Ball and R.D. James, “Fine phase mixtures as minimizers of energy”, Archs Ration Mech. Analysis, 100, pp. 13–50, 1987.

    Article  Google Scholar 

  4. J.M. Ball and R.D. James, “Proposed experimental tests of a theory of fine microstructure, and the two-well problem”, Phil. Trans. R. Soc. Lond A, 338–389,1992.

    Google Scholar 

  5. K. Bhattacharya, “Wedge-like microstructures in martensite”, Acta Metall. ater., 39 (10), pp. 2431–2444, 1991.

    Article  CAS  Google Scholar 

  6. K.F. Hane, “Bulk and thin film microstructures in untwinned martensite”, J. Mech. Phys. Solids, 47, pp. 1917–1939, 1999.

    Article  CAS  Google Scholar 

  7. H. Funakubo (Ed.), “Shape Memory Alloys”, Gordon and Breach, New York, 1987.

    Google Scholar 

  8. T.W. Shield, “Orientation dependence of the pseudoelastic behavior of single crystals of Cu-Al-Ni in tension”, J. Mech. Phys. Solids, 43, pp. 869–895, 1995.

    Article  CAS  Google Scholar 

  9. J. Ball, C. Chu and R.D. James, “Hysteresis during stress-induced variant rearrangement”, J. de Physique IV, C8:245–251, 1995.

    Google Scholar 

  10. S. Stupkiewicz, H. Petryk, “Modelling of laminated microstructures in stress-induced martensite transformations”, J. Mech. Phys. Solids, Vol 50, pp. 2329–2357,2002.

    Article  Google Scholar 

  11. R. D. James and K. F. Hane, “Martensitic transformations and shape memory materials”, Acta mater., 48, pp. 197–222, 2000.

    Article  CAS  Google Scholar 

  12. C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch and P. Blanc, “Experimental and numerical determination of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys”, J. Mech. Phys. Solids, vol 50, pp 2717–2735, 2002.

    Article  CAS  Google Scholar 

  13. K. Otsuka, K. Shimizu, “Morphology and crystallography of thermoelastic Cu-Al-Ni martensite analyzed by the phenomenological theory”, Trans. J.I.M., 15, pp. 103–108,1975.

    Google Scholar 

  14. B. Raniecki, K. Tanaka, A. Ziolkowski, “Testing and modeling of Ni-Ti SMA at complex state Selected results of Polish-Japanese Research Cooperation”, Material Science Research International Special Technical Publication, 2, pp. 327–334, 2001.

    Google Scholar 

  15. Gillet Y., Patoor E. and M. Berveiller, “Calculation of pseudoelastic elements using a nonsymetrical thermomechanical transformation criterion and associated rule”, Journal of intelligent material systems and structures, 9, 366–378,1998.

    Article  CAS  Google Scholar 

  16. B. Raniecki and Ch. Lexcellent, “Thermodynamics of isotropic pseudoelasticity in shape memory alloys”, Eur. J. Mech., A/Solids, 17, n° 2,185–205, 1998.

    Article  Google Scholar 

  17. L. Orgeas, D. Favier, “Stress-induced martensitic transformation of a Ni-Ti alloy in isothermal shear, tension and compression”, Acta Materialia, 46 (15), pp. 5579–5591, 1998.

    Article  CAS  Google Scholar 

  18. E. Patoor, C. Niclaeys, S. Arbab Chirani and T. Ben Zineb, “Influence of microstructural parameters on shape memory alloys behavior”, IUTAM Symposium on Mechanics of Martensite Phase Transformation in Solids, pp. 131–138, Q.P. Sun (Ed.), Kluwer Academic Publishers, 2002.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lexcellent, C., Blanc, P., Bouvet, C. (2004). What about the Yield Transformation Surface Determination (Austenite → Martensite) with The Measurement of Austenite and Martensite Lattice Parameters for some Shape Memory Alloys?. In: Ahzi, S., Cherkaoui, M., Khaleel, M.A., Zbib, H.M., Zikry, M.A., Lamatina, B. (eds) IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials. Solid Mechanics and Its Applications, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0483-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0483-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6529-2

  • Online ISBN: 978-94-017-0483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics