The Influence of an Heterogeneous Dispersion on the Failure Behaviour of Metal-Matrix Composites: Micromechanical Approach

  • K. Derrien
  • D. Baptiste
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


We use an homogenisation method in order to predict the failure behaviour of metal-matrix composites. The main damage mechanism is particle failure. We study the influence of an heterogeneous dispersion of the reinforcement on the damage development and the failure strain of composites which contain locally a higher volume fraction of reinforcement. We compare experimental and theoretical results.

Key words

Metal-matrix composites (MMCs) — Fracture Damage- Heterogeneous dispersion Homogenisation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Derrien K, Baptiste D, Guedra-Degeorges D, Foulquier J. Multiscale modeling of the damaged plastic behaviour of Al/SiCp composites, International journal of Plasticity, n°15 (1999) p 667–685CrossRefGoogle Scholar
  2. 2).
    Derrien K, Baptiste D, Guedra-Degeorges D. Prediction of damaged behaviour and failure of a metal matrix composite using a multi-scale approach, Damage Mechanics in Engineering Materials, 1997, Publishers: G.Z.Voyiadjis, J.W.Ju and J.L.Chaboche Elsevier ScienceGoogle Scholar
  3. 3).
    Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall, vol 21, 1973, pp571–574CrossRefGoogle Scholar
  4. 4).
    Mochida T, Taya M, Lloyd DJ. Fracture of particles in a particle/metal matrix composite under plastic straining and its effect on the Young’s modulus of the composite, Materials Transactions, JIM, vol32, n°10, 1991, pp 931–942Google Scholar
  5. 5).
    Qiu Y.P., Weng G.J. A Theory of plasticity for porous materials and particle-reinforced composites, Journal of Applied Mechanics, vol59, June 1992, pp 261–268CrossRefGoogle Scholar
  6. 6).
    Hutchinson J. W. Singular behaviour at the end of a tensile crack in a hardening material, J.Mech Phys Solids, vol 16, 1968,pp 13–31CrossRefGoogle Scholar
  7. 7).
    Rice J.R., Rosengren G.F. Plane strain deformation near a crack in a power law hardening materials. J.Mech.Phys.Solids 1968, vol 16, pp 1–13CrossRefGoogle Scholar
  8. 8).
    Li F.Z, Pan J. Plane-Strain Crack Tip fields for pressure sensitive dilatant materials. Journal of Applied Mechanics. vol57, march 1990, p 40–60CrossRefGoogle Scholar
  9. 9).
    Berns H, Broeckman C, Weichert D. The effect of coarse second phase particles on the creep behaviour of ard metallic alloysKey Engineering Materials, vols 118–119, 1996Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • K. Derrien
    • 1
  • D. Baptiste
    • 1
  1. 1.LM3 CNRS ESA 8006ENSAM ParisParisFrance

Personalised recommendations