Computer Simulation of Contact Force Distribution in Random Granular Packings

  • A. H. W. Ngan
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


Discrete element simulations show that the contact force distribution in a stressed granular packing can be described by a single, lumped parameter known as the “mechanical temperature”. The simulated results suggest that equilibrium is governed by a free energy functional containing an energy and an entropy component. Similar to the role of the conventional thermal temperature, the mechanical temperature controls the relative importance between energy and entropy.


Discrete element simulation granular materials statistical physics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.F. Edwards, in “Granular Matter — An Interdisciplinary Approach”, ed. A. Mehta, (Springer-Verlag: New York), (1994), Chp. 4.Google Scholar
  2. [2]
    C.H. Liu et al, Science, 269, 513 (1995).CrossRefGoogle Scholar
  3. [3]
    F. Radjai et al, Phys. Rev. Lett., 77, 274 (1996).CrossRefGoogle Scholar
  4. [4]
    D.M. Mueth, H.M. Jaeger and S.R. Nagel, Phys. Rev. E, 57, 3164 (1998).CrossRefGoogle Scholar
  5. [5]
    K. Bagi, in “Powders and Grains 97”, ed. R.P. Behringer and J.T. Jenkins, (A.A. Balkema, Rotterdam, Netherlands), p. 251 (1997).Google Scholar
  6. [6]
    P. Evesque, in “Powders and Grains 2001”, ed. Y. Kishino, (A.A. Balkema, Lisse, Netherlands), p. 153 (2001).Google Scholar
  7. [7]
    N.A. Makse, D.L. Johnson and L.M. Schwartz, Phys. Rev. Lett., 84, 4160 (2000).CrossRefGoogle Scholar
  8. [8]
    M.L. Nguyen and S.N. Coppersmith, Phys. Rev. E, 62, 5248 (2000).CrossRefGoogle Scholar
  9. [9]
    C.S. O’Hern et al, Phys. Rev. Lett., 86, 111 (2001).CrossRefGoogle Scholar
  10. [10]
    S.N. Coppersmith et al, Phys. Rev. E., 53, 4673 (1996).CrossRefGoogle Scholar
  11. [11]
    J.E.S. Socolar, Phys. Rev. E, 57, 3204 (1998).CrossRefGoogle Scholar
  12. [12]
    P. Claudin et al, Phys. Rev. E, 57, 4441 (1998).CrossRefGoogle Scholar
  13. [13]
    O. Narayan, Phys. Rev. E, 63, 010301(R) (2000).CrossRefGoogle Scholar
  14. [14]
    K.L. Johnson, “Contact Mechanics”, Cambridge University Press, (1985), p. 101.CrossRefGoogle Scholar
  15. [15]
    C.F. Moukarzel, in “Rigidity Theory and Applications”, ed. M.F. Thorpe and PM. Duxbury, (Kluwer Academic/Plenum, New York), p. 125 (1999).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • A. H. W. Ngan
    • 1
  1. 1.Department of Mechanical EngineeringThe University of Hong KongP.R. China

Personalised recommendations