Damage, Opening and Sliding of Grain Boundaries

  • A. Musienko
  • G. Cailletaud
  • O. Diard
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


This paper presents an approach to the modeling of damage, opening and sliding of the grain boundaries in zircaloy submitted to stress corrosion cracking. Grain boundaries are seen as a continuous material. The grains are modeled by a model of crystal viscoplasticity. Environement is taken into account by means of weak coupling between diffusion and mechanics. 2D and 3D finite element computations for polycrystalline aggregates are presented.


Stress corrosion cracking Intergranular failure Grain boundaries Zircaloy Crystal plasticity. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allix, O. and Ladevèze, P. (1992). Interlaminar interface modeling for the prediction of laminate delamination. J. Compos. Struct, 22:235–242.CrossRefGoogle Scholar
  2. Besson, J., Le Riche, R., Foerch, R., and Cailletaud, G. (1998). Object-oriented programming applied to the finite element method, part ii. application to material behaviors. Revue Européenne des Éléments Finis, 7(5):567–588.Google Scholar
  3. Chaboche, J.-L., Feyel, F., and Monerie, Y. (2001). Interface debonding models: a viscous reg-ularization with a limited rate dependency. Int. J. Solids Structures, 38:3127–3160.CrossRefGoogle Scholar
  4. Diard, O., Leclercq, S., Rousselier, G., and Cailletaud, G. (2003). Modeling of iodine-induced stress corrosion cracking in a zirconium alloy, chemical-mechanical coupled formulation at the granular level, application to intergranular damage modeling, submitted. Google Scholar
  5. Fregonese, M., Lefebvre, F., Lemaignan, C, and Magnin, T. (1999). Influence of recoil-implanted and thermally released iodine on i-scc of zircaloy-4 in pci-conditions: chemical aspects. J. Nucl. Mat., 265:245–254.CrossRefGoogle Scholar
  6. Lemaitre, J. (1996). A course of Damage Mechanics. Springer Verlag.CrossRefGoogle Scholar
  7. Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. J. of Applied Mechanics, 54:525–531.CrossRefGoogle Scholar
  8. Onck, P. and van der Giessen, E. (1997). Microstructurally-based modelling of intergranular creep fracture using grain elements. Mech. of Materials, 26:109–126.CrossRefGoogle Scholar
  9. Raj, R. and Ashby, M. (1975). Intergranular fracture at elevated temperature. Acta Metall, 23:653–666.CrossRefGoogle Scholar
  10. Rice, J. (1981). Constraints of the diffusive cavitation of isolated grain boundary facets in creeping polycrystals. Acta Metallurgica, 29:675–681.CrossRefGoogle Scholar
  11. Tvergaard, V. (1984). On the creep constrained diffusive cavitation of grain boundary facets. J. Mech. Phys. Sol, 32(5):373–393.CrossRefGoogle Scholar
  12. Tvergaard, V. (1990). Effect of fiber debonding in a whisker-reinforced metal. Material Science and Engineering, 125:203–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • A. Musienko
    • 1
  • G. Cailletaud
    • 1
  • O. Diard
    • 2
  1. 1.Centre des Matériaux de l’Ecole des Mines de ParisEvryFrance
  2. 2.Electricité de FranceCentre des RenardièresMoret-sur-LoingFrance

Personalised recommendations