Multiaxial Plastic Fatigue Behavior with Multiscale Modeling

  • A. Abdul-Latif
  • K. Saanouni
  • J. Ph. Dingli
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


With a small strain assumption, a multiscale model of damage initiation in Low-Cycle Fatigue (LCF) is proposed to describe the cyclic damaged behavior of polycrystal under different cyclic loading paths (simples and complexes). The evolution of the internal variables on the Crystallographic Slip System (CSS) are recorded under these loading paths up to final fracture of the Representative Volume Element (RVE). It is well recognized that the model can appropriately reproduce the macroscopic damaged responses of polycrystals in plastic fatigue.

Key words

multiscale model multiaxial cyclic loading damage low-cycle fatigue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Browen, M. W. and Miller, K. J. (1973). “A Theory for Fatigue under Multiaxial Stress-Strain Conditions,” Proc. Inst. Mech. Engineers, 187,745.Google Scholar
  2. Garud, Y. S. (1981). “Multiaxial Fatigue: A Survey of the State of the Art,” J. Testing and Evaluation, 9 , 165.Google Scholar
  3. Krempl, E. (1974). “The Influence of State of Stress on Low-Cycle Fatigue of Structural Materials: A literature Survey and Interpretive Report,” ASTM STP 549, ASTM, Philadelphia, pp. 46.Google Scholar
  4. Lemaître, J. and Chaboche, J. L. (1985). “Mécanique des Matériaux Solides,” Dunod, Bordas, Paris.Google Scholar
  5. Abdul-Latif, A. and Saanouni, K. (1994). “Damaged Anelastic Behavior of FCC Polycrystalline Metals with Micromechanical Approach,” Int. J. Damage Mech., 3, 237.CrossRefGoogle Scholar
  6. Abdul-Latif, A. and Saanouni, K. (1996). “Micromechanical Modeling of Low Cycle Fatigue under Complex Loadings — Part II. Applications,” Int. J. Plasticity, 12,1123.CrossRefGoogle Scholar
  7. Abdul-Latif, A. and Saanouni, K. (1997). “Effect of some Parameters on the Plastic Fatigue Behavior with Micromechanical Approach,” Int. J. Damage Mech., 6,433.CrossRefGoogle Scholar
  8. Abdul-Latif, A., Ferney, V., and Saanouni, K. (1999). “Fatigue Damage of Waspaloy under Complex Loading,” ASME, J. Engeg. Mat. Tech., 121,278.CrossRefGoogle Scholar
  9. Abdul-Latif, A. (1999). “Unilateral Effect in Plastic Fatigue with Micromechanical Approach,” Int. J. Damage Mech., 8,316.CrossRefGoogle Scholar
  10. Saanouni, K., Abdul-Latif, A. (1996). “Micromechanical Modeling of Low Cyclic Fatigue under Complex Loadings-Part I. Applications,” Int. J. Plasticity, 12,1111.CrossRefGoogle Scholar
  11. Abdul-Latif, A., Dingli, J. Ph., and Saanouni, K. (2002). “Elastic-Inelastic Self-Consistent Model for Polycrystals,” J. of Applied Mechanics, 69,309.CrossRefGoogle Scholar
  12. Dingli, J. P., Abdul-Latif, A., and Saanouni, K. (2000). “Predictions of the Complex Cyclic Behavior of Polycrystals Using a New Self-consistent Modeling,” Int. J. Plasticity, 16,411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • A. Abdul-Latif
    • 1
  • K. Saanouni
    • 2
  • J. Ph. Dingli
    • 2
  1. 1.ERBEMIUT de TremblayTremblay-en-FranceFrance
  2. 2.GSM/LASMIS Université de Technologie de Troyes-B.P. 2060TroyesFrance

Personalised recommendations