Multiscale Modelling of Texture Gradient Effects on Localization in FCC Polycrystals

  • Kenneth W. Neale
  • Kaan Inal
  • Pei-Dong Wu
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


The effects of through-thickness texture gradients on instabilities and localized deformation in FCC polycrystals are investigated. In-house finite element analyses based on a rate-dependent crystal plasticity model have been developed to simulate large strain behaviour for sheet specimens subjected to plane strain tension. Modelling of the polycrystalline aggregates is carried out at various scales, and predictions of localized deformation are compared against each other.


multiscale modelling crystal plasticity texture gradients instabilities localized deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Peirce, R. J. Asaro, and A. Needleman, “Material rate dependence and localized deformation in crystalline solids”, Acta Metallurgies vol. 31, pp. 1951–1976, 1983.CrossRefGoogle Scholar
  2. [2]
    R. J. Asaro, and A. Needleman, “Texture development and strain hardening in rate dependent polycrystals”, Acta Metallurgical vol. 33, pp. 923–953, 1985.CrossRefGoogle Scholar
  3. [3]
    P. D. Wu, K. W. Neale, and E. Van Der Giessen, “On crystal plasticity FLD analysis”, Proceedings of the Royal Society ofLondon,vol. 453, pp. 1831–1848, 1997.CrossRefGoogle Scholar
  4. [4]
    K. Inal, P. D. Wu, and K. W. Neale, “Simulation of earing in textured aluminum sheets”, Internationaljournal of Plasticity, vol. 16, pp. 635–648, 2000.CrossRefGoogle Scholar
  5. [5]
    K. Inal, P. D. Wu, and K. W. Neale, “Instability and localized deformation in polycrystalline solids under plane strain tension”, International Journal of Solids and Structures, vol. 39, pp. 983–1002,2002.CrossRefGoogle Scholar
  6. [6]
    K. Inal, P. D. Wu, and K. W. Neale, “Finite element analysis of localization in FCC polycrystalline sheets under plane stress tension”, International Journal of Solids and Structures, vol. 39, pp. 3469–3486,2002.CrossRefGoogle Scholar
  7. [7]
    K. Inal, P. D. Wu, and K. W. Neale, “Large strain behaviour of aluminium sheets subjected to in-plane simple shear”, Modelling and Simulation in Materials Science and Engineering, vol. 10, pp. 237–252, 2002.CrossRefGoogle Scholar
  8. [8]
    L. Anand, and S. R. Kalidindi, “The process of shear band formation in plane strain compression of FCC metals: effects of crystallographic texture”, Mechanics of Materials, vol. 17, pp. 223–243, 1994.CrossRefGoogle Scholar
  9. [9]
    P. D. Wu, K. Inal, K. W. Neale, L. D. Kenny, M. Jain, and S. R. MacEwen, “Large strain behaviour of very thin aluminium sheets under planar simple shear”, Journal de Physique TV, vol. 11, pp. 229–236, 2001.Google Scholar
  10. [10]
    Y. W. Chang, and R. J. Asaro, “An experimental study of shear localization in aluminum-copper single crystals”, Acta Metallurgica, vol. 29, pp. 241–254, 1981.CrossRefGoogle Scholar
  11. [11]
    K. Inal, K. W. Neale, and P. D. Wu, “Parallel finite element algorithms for the analysis of multiscale plasticity problems”, in Application of High-Performance Computing in Engineering VII — 2002. Conference. 23 Sep.-25 Sep. 2002; Bologna, ITALY, C. A. Brebbia, P. Meli, and A. Zanasi, Eds., 2002Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Kenneth W. Neale
    • 1
  • Kaan Inal
    • 1
  • Pei-Dong Wu
    • 2
  1. 1.Faculty of EngineeringUniversity of SherbrookeSherbrookeCanada
  2. 2.Alcan International LimitedKingston R&D CentreKingstonCanada

Personalised recommendations