Homogeneization of Viscoplastic Materials

  • Alain Molinari
  • Sébastien Mercier
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


The approximate solution of the non-linear inclusion problem, Molinari, Canova, Ahzi (1987), Molinari (1997) is used to define various averaging schemes for viscoplastic heterogeneous materials, among which the tangent self-consistent model and the non-linear Mori-Tanaka model.

Keywords Non-linear inclusion viscoplasticity averaging self-consistent tangent model Mori-Tanaka model. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Canova, G.R., Wenk, H.R. and A. Molinari : Deformation Modelling of Multiphase Polycrystals : case of a quartz-mica Aggregate, Acta Met., (1992), 1519–1530.Google Scholar
  2. Castaneda P.P., New variational-principles in plasticity and their implication to composite materials, J. Mech. Phys. Solids, 40 (1992), 1757–1788.CrossRefGoogle Scholar
  3. Eshelby, J.D. : The determination of the elastic field of an ellipsoidal inclusion,and related problems, Proc. Roy. Soc. London, A241 (1957), 376.CrossRefGoogle Scholar
  4. Gilormini, P., and Y. Germain : Int. J. Solids Struct, 23 (1987), 413.CrossRefGoogle Scholar
  5. Gilormini P, and Michel JC, Finite element solution of a spherical inhomogeneity in an infinite power-law viscous matrix, Eur. J. Mech. A-Solids, 17, (1998), 725–740.CrossRefGoogle Scholar
  6. Hill, R. : Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13 (1965), 89.CrossRefGoogle Scholar
  7. Hutchinson, J.W. : Bounds and Self-Consistent Estimate for Creep of Polycrystalline Materials, Proc. Roy. Soc, A348 (1976), 101.CrossRefGoogle Scholar
  8. Kreher W.: Residual stresses and stored elastic energy of composites and polycrystals, J. Mech. Phys. Solids, 38 (1990), 115–128.CrossRefGoogle Scholar
  9. Lebensohn, R.A. and C.N. Tomé : A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : Application to zirconium alloys, Acta Metall. et Mater., 41 (1993), 2611–2624.CrossRefGoogle Scholar
  10. Masson R, Zaoui A : Self-consistent estimates for the rate-dependent elastoplastic behaviour ofpolycrystalline materials, J. Mech. Phys. Solids, 47 (1999),1543–1568CrossRefGoogle Scholar
  11. Molinari, A., G.R. Canova and S. Ahzi : A self-consistent approach of the large deformation polycrystal viscoplasticity , Acta Metall., 35 (1987), 2983–2994.CrossRefGoogle Scholar
  12. Molinari, A., and L. Toth : Tuning a self-consistent viscoplastic model by finite element results I : Modeling, Acta Metall. Mater., 42 (1994), 2453–2458.Google Scholar
  13. Molinari, A. : Self consistent modelling of plastic and viscoplastic polycrystalline materials, CISM lecture notes, (Ed. C. Teodosiu), Springer Verlag (1997), ppl73–246.Google Scholar
  14. Molinari A.: Extensions of the self-consistent tangent model, Modelling and Simulation in Materials Science and Engineering, 7, (1999), 683–697.CrossRefGoogle Scholar
  15. Molinari, A., F. El-Houdaigui and L.S. Toth: Comparison of the tangent model predictions to finite element results for the solution of the inclusion problem in viscoplasticity, Zamm, Z. Angew. Math. Mech., 80 (2000), 21–24.CrossRefGoogle Scholar
  16. Molinari A.: Averaging models for heterogeneous viscoplastic and elastic visco-plastic materials, ASME J. of Engineering Materials and Technology, 124, (2002), 62–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Alain Molinari
    • 1
  • Sébastien Mercier
    • 1
  1. 1.Laboratoire de Physique et Mécanique des Matériaux UMR CNRS 7554, ISGMPUniversité de MetzMetzFrance

Personalised recommendations