Experimental Investigations of Size Effects in Thin Copper Foils

  • Gerd Simons
  • Jürg Dual
  • Christina Weippert
  • Jürgen Villain
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)


This work deals with the characterization of the deformation behavior of thin copper foils with the goal of investigating size effects. Tensile tests are performed with specimens, which possess a comparable microstructure, a constant thickness/width and width/length ratio whereas the thickness varies from 10 to 250 µm. Results show a transition from ductile to a macroscopically “brittle” behavior in the range of about 20 µm.

Key words

size effects thin copper foils microstructure tensile testing fracture surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    “Back to the Future: Copper Comes of Age”, IBM Research Magazine, vol. 35, 1997.Google Scholar
  2. [2]
    S. P. Baker, R. M. Keller, A. Kretschmann, and E. Arzt, “Deformation mechanisms in thin Cu films”, in Materials Reliability in Microelectronics VIII. Symposium. 13–16 April 1998; San Francisco, CA, USA, vol. 516, Mat. Res. Soc. Symp. Proc, J. C. Bravman, T. N. Marieb, J. R. Lloyd, and M. A. Korhonen, Eds., 1998, pp. 287–298.Google Scholar
  3. [3]
    R. M. Keller, S. P. Baker, and E. Arzt, “Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation”, Journal of Materials Research, vol. 13, pp. 1307–1317, 1998.CrossRefGoogle Scholar
  4. [4]
    D. T. Read, “Tension-tension fatigue of copper thin films”, International journal of Fatigue, vol. 20, pp. 203–209, 1998.CrossRefGoogle Scholar
  5. [5]
    N. A. Fleck, G. M. Müller, M. F. Ashby, and J. W. Hutchinson, “Strain Gradient Plasticity — Theory and Experiment”, Acta Metallurgica Et Materialia, vol. 42, pp. 475 – 487, 1994.CrossRefGoogle Scholar
  6. [6]
    R. Hofbeck, K. Hausmann, B. Ilschner, and H. U. Kunzi, “Fatigue of Very Thin Copper and Gold Wires”, Scripta Metallurgica, vol. 20, pp. 1601–1605, 1986.CrossRefGoogle Scholar
  7. [7]
    M. Anwander, A. Hadrboletz, B. Weiss, and B. Zagar, “Thermal and mechanical properties of micromaterials using laser optical strain sensors”, Proceedings of the SPIE The International Society for Optical Engineering, vol. 3897, pp. 404–413, 1999.CrossRefGoogle Scholar
  8. [8]
    A. Hadrboletz, G. Khatibi, and B. Weiss, “The “Size-Effect” on the Fatigue and Fracture Properties of Thin Metallic Foils”, presented at Euromat 99, October 1999, Munich, 1999.Google Scholar
  9. [9]
    A. Hadrboletz, B. Weiss, and G. Khatibi, “Fatigue and fracture properties of thin metallic foils”, International Journal of Fracture, vol. 109, pp. 69–89, 2001.CrossRefGoogle Scholar
  10. [10]
    M. Judelewicz, “Cyclic Deformation of 100-Mu-M Thin Polycrystalline Copper Foils”, Scripta Metallurgica Et Materialia, vol. 29, pp. 1463–1466, 1993.CrossRefGoogle Scholar
  11. [11]
    G. Simons, C. Weippert, J. Dual, and J. Villain, “Investigating Size Effects on Mechanical Properties: Preliminary Work and Results for Thin Copper Foils”, presented at Materialsweek, International Congress Centre Munich, 2001.Google Scholar
  12. [12]
    E. Arzt, “Overview no. 130 — Size effects in materials due to microstructural and imensional constraints: A comparative review”, Acta Materialia, vol. 46, pp. 5611 – 626,1998.CrossRefGoogle Scholar
  13. [13]
    M. R. Begley and J. W. Hutchinson, “The mechanics of size-dependent indentation”,Journal of the Mechanics and Physics of Solids, vol. 46, pp. 2049–2068,1998.CrossRefGoogle Scholar
  14. [14]
    N. A. Fleck and J. W. Hutchinson, “A reformulation of strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, vol. 49, pp. 2245–2271,2001.CrossRefGoogle Scholar
  15. [15]
    H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, “Mechanism-based strain gradient plasticity -1. Theory”, Journal of the Mechanics and Physics of Solids, vol. 47, pp. 1239–1263, 1999.CrossRefGoogle Scholar
  16. [16]
    J. W. Hutchinson, “Plasticity at the micron scale”, International Journal of Solids and Structures, vol. 37, pp. 225–238,2000.CrossRefGoogle Scholar
  17. [17]
    J. G. Sevillano, “Intrinsic and extrinsic size effects in plasticity by dislocation glide”, in Multiscale Modeling of Materials — 2000. Symposium. 27 Nov.-l Dec. 2000; Boston, MA, USA, vol. 653, Mater. Res. Soc. Symp. Proc, L. P. Kubin, R. L. Selinger, J. L. Bassani, and K. Cho, Eds., 2001.Google Scholar
  18. [18]
    J. G. Sevillano, I. O. Arizcorreta, and L. P. Kubin, “Intrinsic size effects in plasticity by dislocation glide”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 309, pp. 393–405,2001.CrossRefGoogle Scholar
  19. [19]
    J. Villain and O. S. Brüller, “Influence of Specimen Dimensions on Creep Behaviour of Solder Materials”, presented at MicroMat 2000, Berlin, Germany, 2000.Google Scholar
  20. [20]
    J. Villain, C. Weippert, G. Simons, and J. Dual, “Size Effects and Mechanical Properties: Results for Thin Copper Foils”, presented at Materialsweek, International Congress Centre Munich, 2002.Google Scholar
  21. [21]
    E. Mazza, S. Abel, and J. Dual, “Experimental determination of mechanical properties of Ni and Ni-Fe microbars”, Microsystem-Technologies, vol. 2, pp. 197–202,1996.CrossRefGoogle Scholar
  22. [22]
    J. R. Davis and ASM International Handbook Committee, Properties and selection: Nonferrous alloys and special-purpose materials, vol. 2,10th ed. Materials Park, OH: ASM International, 1990.Google Scholar
  23. [23]
    K. E. Volk and R. Ergang, Nickel und Nickellegierungen Eigenschaften und Verhalten. Berlin etc.: Springer, 1970.CrossRefGoogle Scholar
  24. [24]
    W. F. Hosford, The mechanics of crystals and textured poly crystals. New York etc.: Oxford University Press, 1993.Google Scholar
  25. [25]
    G. Wassermann and J. Grewen, Texturen metallischer Werkstoffe, 2nd. ed. Berlin etc.: Springer, 1962.CrossRefGoogle Scholar
  26. [26]
    J. P. Hirth, “The influence of grain boundaries on mechanical properties”, Metallurgical- Transactions-A-(Physical-Metallurgy-and-Materials-Science), vol. 3, pp. 3047–3067, 1972.CrossRefGoogle Scholar
  27. [27]
    G. Danuser and E. Mazza, “Observing deformations of 20 nanometer with a low numerical aperture light microscope”, Proceedings of the SPIE The International Societ for Optical Engineering, vol. 2782, pp. 180–191, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Gerd Simons
    • 1
  • Jürg Dual
    • 1
  • Christina Weippert
    • 2
  • Jürgen Villain
    • 2
  1. 1.Institute of Mechanical SystemsZurichSwitzerland
  2. 2.University of Applied Sciences AugsburgAugsburgGermany

Personalised recommendations