Skip to main content

Part of the book series: Environmental Science and Technology Library ((ENST,volume 4))

  • 98 Accesses

Abstract

As mentioned before, the principal hazard scenarios associated with accidental chemical releases which may lead to detrimental consequences to people and property include fires, explosions, and toxic and flammable vapor dispersion. The formation of toxic or flammable gas clouds at release point and their dispersion into the atmosphere has the potential for involving a large area and consequently exposing a large population to the danger resulting from toxic vapors, fire or explosion. In Volume I, we have presented a review concerning atmospheric dispersion models for continuous and non-point sources. In the present chapter we shall consider the dispersion of gases heavier than air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Chapter 5)

  1. Hanna, S.R., Review of atmospheric diffusion models for regulatory applications, Technical Note No. 177, Rep. No. WMO 581. Secretariat of the World Meteorological Organization, Geneva - Switzerland, (1982).

    Google Scholar 

  2. Tumer, D.B., Atmospheric dispersion modeling: A critical review, J. Air Poll. Control Assoc. 29 (1979) 502–519.

    Google Scholar 

  3. Simpson, J.E., Gravity currents in the laboratory, Atmosphere and Oceanic Ann. Rev. Fluid mech., 14 (1982) 213–234.

    Google Scholar 

  4. Van Ulden, A.P., The spreading and mixing of dense gas clouds in still air, Thesis of the Technische Universiteit Delft, The Netherlands, (1988).

    Google Scholar 

  5. Picknett, R.G.; Carpenter, R.J., Field Experiments on the Behavior of Dense Clouds, Chemical Defense Establishment, Porton Downs, UK, September 1978, Rep. No. Ptn. IL 1154/78/1.

    Google Scholar 

  6. Fannelop, T.K., The Dynamics of Heavy Gas Clouds, Division of Aero and Gas Dynamics, University of Trondheim, Norway, May 1980, Report IFAG B-124.

    Google Scholar 

  7. Fannelop, T.K.; Jacobsen, O., Gravitational spreading of heavy gas clouds instantaneously released, Z. Angew. Math. Phys., 35 (1984) 559–584.

    Google Scholar 

  8. Havens, J.A.; Spicer, T.O., Gravity spreading and air entrainment by heavy gases instantaneously released in a calm atmosphere, in Ooms and Tennekes (eds.), Atmospheric Dispersion of Heavy Gases and Small Particles, Springer Verlag, (1984), pp. 179–189.

    Google Scholar 

  9. Kaiser, G.D.; Walker, B.C., Releases of anhydrous ammonia from pressurized containers - The importance of denser-than-air mixtures, Atmospheric Environment, 12 (1978) 2289.

    Google Scholar 

  10. Havens, J.A., An assessment of the predictability of LNG vapour dispersion, Journal of Hazardous Materials, 3, (1980) 257.

    Google Scholar 

  11. Havens, J.A., An Assessment of predictability of LNG vapor dispersion from catastrophic spills onto water, J. Hazard. Mater., 3 (1980) 267–278.

    Google Scholar 

  12. Webber, D.M., The Physics of Heavy Gas Cloud Dispersal. Safety and Reliability Directorate, UKAEA, Culchetch, GB, Rep. No. SRD R243, (1983).

    Google Scholar 

  13. Mc Quaid, J., The box model of heavy gas dispersion: a useful and practical tool, J. Occ. Ace., 6 (1984) 253–261.

    Google Scholar 

  14. Van Ulden, A.P., On the spreading of heavy gas released near the ground. Proc. Int. Loss Prevention Symp., Ed.: C.H. Buschman, Elsevier, Amsterdam, (1974), pp. 221–226.

    Google Scholar 

  15. Cox, R.A.; Carpenter, R.J., Further development of a dense vapour cloud dispersion model for hazard analysis, Proc. of the Symposium on Heavy Gas Dispersion, Frankfurt, (1979).

    Google Scholar 

  16. Raj, P.K., On the near Field dispersion of Heavy Vapor/Aerosol Plume Generated by the Release of Pressurized Liquid Ammonia, Interim Report to U.S. Naval Weapons Center, China Lake, California, November 1980.

    Google Scholar 

  17. Raj, P.K.; Aranamuden, K., Theoretical Models Supporting the Design of Ammonia Spill Experiments, Report to the Fertilizer Institute, Washington, DC, (1980).

    Google Scholar 

  18. Jagger, S.F., Development of CRUNCH: a dispersion model for continuous release of a denser-than-air vapour in the atmosphere, UKEA Rep. No. SRD R229, (1983).

    Google Scholar 

  19. Colenbrander, G.W., A mathematical model for the transient behaviour of dense vapour clouds, 3rd International Symposium, Loss Prevention and Safety Promotion in the Process Industries, Basel, Switzerland, (1980).

    Google Scholar 

  20. Havens, J.A., A review of mathematical models for prediction of heavy gas atmospheric dispersion, I. Chem. E. Symposium Series No. 71, 14–16 April 1982.

    Google Scholar 

  21. Wheatley, C.J.; Webber, D.M., Aspects of the Dispersion of Denser-than-Air Vapours Relevant to Gas Cloud Explosions, SRD Report to the European Atomic Energy Community, (1984).

    Google Scholar 

  22. Raj, P.K., Atmospheric Dispersion of Chemical Agents: A Model Including Thermodynamic and Heavy Gas Effects. Report to the U.S. Army by Technology Management Systems, Burlington, Mass., (1983).

    Google Scholar 

  23. Havens, J.A., A review of mathematical models for prediction of heavy gas atmospheric dispersion, International Chemical Symposium, Serial No. 71, Manchester, England, (1982).

    Google Scholar 

  24. Carslaw, H. S.; Jaeger, J.C., Conduction of Heat in Solids, 1st edition, Clarendon Press, Oxford, (1947).

    Google Scholar 

  25. Rottman, J.W.; Simpson, J.E.; Hunt, J.C.R.; Britter, R.E., Unsteady gravity current flows over obstacles - Some observation and analysis related to the phase II trials, Proc. of Symp. on Heavy Gas Dispersion Trials at Thorney Island, Univ. of Sheffield 3–5 April 1984, J. Hazard Mater., (1985).

    Google Scholar 

  26. Havens, J.A., A Description and Assessment of the SIGMET LNG Vapor Dispersion Model, U.S. Coast guard, Report CG-M-3–79, February 1979.

    Google Scholar 

  27. Havens, I.A., A description and computational assessment of the SIGMET LNG vapor dispersion model, J. Hazard. Mater, 6 (1) (1982) 197–212.

    Google Scholar 

  28. Jagger, S.F., The dispersion of dense, toxic, and flammable clouds in the atmosphere, I. Mech. E. Seminar, September 1982.

    Google Scholar 

  29. Robins, A.G., Introduction to the Numerical Modelling of Dispersion in the Atmospheric Boundary Layer, in “von Karman Inst. For Fluid Dynamics”, Introduction to Numerical Solution to Industrial Flows, Vol. 1 Leatherhead (England), (1986).

    Google Scholar 

  30. Blackmore, D.R.; Herman, M.N.; Woodward, J.L., Heavy gas dispersion models, J. Hazard. Mater., 6 (1–2), (1982) 107–128.

    CAS  Google Scholar 

  31. Fannelop, T.K.; Waldman, G.D., The dynamics of oil slicks–or “creeping crude”, 9th Aerospace Science Meeting A.I.A.A., New York, January 1971. See also The dynamics of oil slick, A.I.A.A. Journal, 10 (1972) 506–510.

    Google Scholar 

  32. Van Ulden, A.P., The unsteady gravity spread of a dense gas cloud in a calm environment, in Proceedings of 10th. I.T.M. on Air Poll. Mod. and its Appl., NATO-CCMS, Rome, (1979).

    Google Scholar 

  33. Byggstoyl, S.; and Saetran, L.R., An Integral Model for gravity Spreading of Heavy Gas Clouds, Atm. Env. 17 (9), (1983) 1615–1620.

    Google Scholar 

  34. Van Ulden, A.P., A new bulk model for dense gas dispersion: two-dimensional spread in still air, in Atm. Dispersion of Heavy Gases and Small particles, in G. Ooms and H. Tennekes, (eds.), Springer Verlag, pp. 419–440, (1984).

    Google Scholar 

  35. Havens, J.A.; Spicer-T.O., Development of an Atmospheric Dispersion Model for Heavier-Than-Air Gas Mixtures. Volume 1. Final rept. Sep 80-May 85. Arkansas Univ., Fayetteville. Dept. of Chemical Engineering, Rep. No. USCGD2285.

    Google Scholar 

  36. Jagger, S.F.; Kaiser, G.D., The accidental release of dens flammable and toxic gases from pressurized containment - transition from pressure driven to gravity driven phase, Proc. 11th Int. Tech. Meeting on Air Pollution Modelling and its Apllications, Amsterdam, NATO, (1981).

    Google Scholar 

  37. Thaning, L.; Winter, S.; Nyren, K., Uppkomst och Utbredning av Explosiva och Giftiga Gasmoln: Inventering av Kunskapslaege och Forskningsbehov (Formation and Spreading of Flammable and Toxic Gas Clouds: A Survey of the Current Knowledge and Need for Research). Rep. No. FOAE40036, (1988).

    Google Scholar 

  38. Kaiser, G.D., Examples of the successful application of a simple model for the atmospheric dispersion of dense, cold vapours to the accidental release of anhydrous ammonia from pressurized containers, UKAEA Rep. No. SRD R150, (1979).

    Google Scholar 

  39. Griffiths, R.F.; Kaiser, G.D., The accidental release of anhydrous ammonia to the atmosphere - A systematic study of factors influencing cloud density and dispersion, UKAEA Rep. No. SRD R154, (1979).

    Google Scholar 

  40. Kaiser, G.D., The accidental release of anhydrous ammonia to the atmosphere–Evidence for the occurence of denser-than-air-mixtures, Loss Prevention Bull., 38 (1981) 1–22.

    Google Scholar 

  41. Havens, J.A., A review of mathematical models for prediction of heavy gas atmospheric dispersion, I. Chem. E. Symposium Series No. 71, Manchester, 14–16 April 1982.

    Google Scholar 

  42. Van Ulden, A.P., On the spreading of heavy gas released near the ground, First International Loss Symposium, The Hague, Netherlands, (1974).

    Google Scholar 

  43. Germeles, A.E.; Drake, E.M., Gravity spreading and atmospheric dispersion of LNG vapor clouds, Fourth International Symposium on Transport of Hazardous Cargo by Sea and Inland Waterways, Jacksonvillle, Florida, (1975).

    Google Scholar 

  44. Eidsvik, K.J., A Model for Heavy gas dispersion in the atmosphere, Atmospheric Environment, 14 (1980) 769–777.

    CAS  Google Scholar 

  45. Cox, R.A.; Carpenter, R.J., Further development of a dense vapor cloud dispersion model for hazard analysis, in S. Hartwig, D. Reidel (eds.), Heavy Gas and Risk Assessment, Dordrecht, Holland, (1979).

    Google Scholar 

  46. Te Riele, P.H.M., Atmospheric dispersion of heavy gases emitted at or near ground level, 2nd International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Heidelberg, (1977).

    Google Scholar 

  47. Flothmann, D.; Nikodem, H.J., A heavy–gas dispersion model with continuous transition from gravity spreading to tracer diffusion, in S. Hartwig. D. Reidel (eds.), Heavy Gas Risk Assessment, Dordrecht, Holland, pp. 89–102 (1980).

    Google Scholar 

  48. Ooms, G.; Mathieu, A.P.; Zelis, F, Plume paths of heavy gases, First Loss Prevention Symposium, The Hague, Netherlands, (1974).

    Google Scholar 

  49. Havens, J.A., A Description and Assessment of the SIGMET LNG Vapor Dispersion Model, U.S. Coast Guard, Rep. No. CG-M-3–79, February 1979.

    Google Scholar 

  50. Energy Resource Company, La Jolla, California.

    Google Scholar 

  51. Deygon-Ra, La Jolla, California.

    Google Scholar 

  52. Te Riele, P.H.M., Atmospheric dispersion of heavy gases emitted at or near ground level, Second International Symposium on Loss Prevention and safety Promotion in the Process Industries, Heidelberg, Germany, (1977).

    Google Scholar 

  53. Zeman, O., The Dynamics and Modeling of Heavier-than-Air, Cold Gas Releases, Lawrance Livermore Laboratory (University of California), Rep. No. UCRL-15224, April 17, (1980).

    Google Scholar 

  54. Rosenzweig, J.J., A Theoretical Model for the Dispersion of Negatively Buoyant Vapour Clouds, Ph.D. Dissertation, Massachusetts Institute of Technology, (1980).

    Google Scholar 

  55. Havens, J.A., An assessment of predictability of LNG vapor dispersion from catastrophic spills onto water, J. Hazard. Mater., 3 (1980) 267–278.

    Google Scholar 

  56. Deaves, D.M., 3-Dimensional model predictions for the upwind building trial of Thomey Island Phase II, J. Hazard. Mater., 11 (1985) 341–346.

    CAS  Google Scholar 

  57. Jacobsen, O., 3-D numerical simulation of heavy gas dispersion, J. Hazard. Mater., 16 (1987) 215–230.

    CAS  Google Scholar 

  58. Havens, J.A., An assessment of predictability of LNG vapor dispersion from catastrophic spills into water, Paper C2, Proc. 5th Int. Symp. on the Transport of dangerous goods by Sea and Inland Waterways, Hamburg, F.R.G., (1978).

    Google Scholar 

  59. Schnatz, G.; Flothmann, D., A K-model and its modification for the dispersion of heavy gases, in Sylvius Hartwig, (ed.), Heavy Gas Risk Assessment, Proc. Symp., (1979), Reidel, Dordrecht, Netherlands, pp. 125–39 (1980).

    Google Scholar 

  60. Deaves, D.M., Application of a turbulence flow model to heavy gas dispersion in complex situations, in Sylvius Hartwig (ed.), Heavy Gas Risk Assessessment II, Proc. Symp., 2nd Meeting 1982, Reidel, Dordrecht, Netherlands, pp. 91–102, (1983).

    Google Scholar 

  61. Deaves, D.M., Application of advanced turbulence models in determining the structure and dispersion of heavy gas clouds, in Ooms, G. and H. Tennekes (eds.), Atmospheric Dispersion Heavy Gases Small Part., Symp., 1983, pp. 93–103. Springer Verlag, Berlin, Federal Republic Germany, (1984).

    Google Scholar 

  62. Knox, J.N., The modeling of dispersion of heavy gases, NATO Challenges Mod. Soc., 5 (Air Pollution Model. Its Appl.), pp. 285–94, (1984).

    CAS  Google Scholar 

  63. Tasker, M.N., A review of the basic concepts of dense gas dispersion with special regard to modelling of heat transfer, Sci. Tech. Aerosp. Rep. 22(16) (1984), Abstr. No. N84–25952, (1984).

    Google Scholar 

  64. Tasker, M., Preliminary Wind Tunnel Experiments to Investigate the Effect of Heat Transfer on the Dispersion of Cold Dense Gases, Oxford Univ. ( England ). Dept. of Engineering Science, (1984).

    Google Scholar 

  65. Farmer, C.L., A survey of turbulence models with particular reference to dense gas dispersion, Rep. No. SRD R221, Safety and Reliability Directorate, UKAEA, Culcheth, (1982).

    Google Scholar 

  66. Raj, P.K., Heavy Gas Dispersion - A State-of-the-Art Review of the experimental Results and Models, Heavy Gas Dispersal Lecture Series, 1982–83, Von Karman Institute, Belgium, (1982).

    Google Scholar 

  67. Woodward, J.L.; Havens, J.A., et al., A comparison with experimental data of several models for dispersion of heavy vapor clouds, J. of Hazardous Materials, 6 (1982) 161–180.

    CAS  Google Scholar 

  68. Wheatley, C.J.; Webber, D.M., Aspects of the Dispersion of Heavier-than-air Vapours that are of Relevance to Gas Cloud Explosions, Rep. No. 007 SRUK, Commission of the European Communities ( DG XII ), Brussels, (1984).

    Google Scholar 

  69. Wheatley, C.J.; Webber, D.M., Aspects of the dispersion of denser-than-air vapours relevant to gas cloud explosions, Rep. No. SR/ 007/UK/H Final Report, Commission of the European Communities ( DG XII ), Brussels, (1984).

    Google Scholar 

  70. Gaffen, D.J.; Benocci-C.; Olivari-D., Application of a Lagrangian Dispersion Model to Environmental Problems, Von Karman Institut for Fluid Dynamics, Rhode-Saint-Genese (Belgium). Rep. No. VKITM38, (1985).

    Google Scholar 

  71. Kunkel, B.A., Development of an Atmospheric Diffusion Model for Toxic Chemical Releases, Environmental Research Papers, Oct 84-Sept. (1985), Air Force Geophysics Lab., Hanscom AFB, MA; Rep. No. AFGLTR850338, AFGLERP939.

    Google Scholar 

  72. Frayne, R., Heavy gas dispersion: Applied safety, in R.V. Portelli (ed.), Proceedings of the Heavy Gas (LNG/LPG) Workshop, pp. 108–116, (1985). Rep.No. CONF-8501127-, CE-03673, CSC-CE303673.

    Google Scholar 

  73. McQuaid, J., Overview of current state of knowledge on heavy gas dispersion and outstanding problems/-issues, in R.V. Portelli (ed.), Proceedings of the Heavy Gas (LNG/LPG) Workshop, (1985), pp. 5–28. Rep. No. CONF-8501127-, CE-03673, CSC-CE303673.

    Google Scholar 

  74. Raj, P.K, Summary of heavy gas spills modeling research, in R.V. Portelli (ed.), Proceedings of the Heavy Gas (LNG/LPG) Workshop, (1985), pp. 51–75. Rep. No. CONF-8501127-, CE-03673, CSC-CE303673.

    Google Scholar 

  75. Redondo, J.M., Effects of ground proximity on dense gas entrainment, J. Hazard. Mater., 16 (1987) 381–393.

    CAS  Google Scholar 

  76. Webber, D.M.; Wheatley, C.J., The effect of initial potential energy on the dilution of a heavy gas cloud, J. Hazard. Mater., 16 (1987) 357–380.

    CAS  Google Scholar 

  77. Dunst, M.; Fischer-Bruns, I.; Luksch, U., Box Model Describing the Dispersion of Heavy Gases after Accidents and Its Verification by Experiments, Meteorology Inst., Hamburg Univ. (Germany, F.R.), Rep. No. NP8770246, (1987).

    Google Scholar 

  78. Vanulden, A.P., Spreading and Mixing of Dense Gas Clouds in Still Air, Doctoral thesis, Royal Netherlands Meteorological Inst., (1987). Rep. No. KNMIWR8712.

    Google Scholar 

  79. Fischer-Bums, I., Untersuchungen Zur Ausbreitung Spontan Freigesetzter Schwerer Gase, Meteorology Institut, Hamburg University (Germany, F.R.), Rep. No. WA81, ETN8790373, (1987).

    Google Scholar 

  80. Schreurs, P.; Mewis, J., Numerical aspects of Lagrangian particle model for atmospheric dispersion of heavy gases, J. Hazard. Mater., 17 (1987) 61–80.

    CAS  Google Scholar 

  81. Tasker, M.N., Effect of Heat Transfer on the Dispersion of Cold Dense Gases, Oxford University, England, Thesis, (1987). Rep. No. OUEL168887, ETN8790974.

    Google Scholar 

  82. Mathematical models of the spreading of liquefied hydrocarbons and of the atmospheric dispersion of heavy gases, Sherbrooke, P.Q., Univ. of Sherbrooke, Thesis (July 1987). Availability: MF National Library of Canada, 395 Wellington St., Ottawa, ON, CAN K1A ON4.

    Google Scholar 

  83. Ausbreitungsrechnungen im Rahmen des Vollzugs der Stoerfall-Verordnung. Colloquium on Dispersion Evaluations in the Framework of the Implementation of the Nuclear Accident Ordinance, Muenchen (Germany, F.R.), 23–24 Nov. 1987, Umweltbundesamt - Texte, no. 1/89.

    Google Scholar 

  84. Ermak, D.L.; Merry, M.H., Methodology for Evaluating Heavy Gas Dispersion Models: Final Report, November 1985 - February 1988, Lawrence Livermore National Lab., CA; Rep. No. AFESCESLTR8837.

    Google Scholar 

  85. Rodean, H.C., Toward more realistic material models for release and dispersion of heavy gases, Rep. No. UCRL-53902, (1989).

    Google Scholar 

  86. Ermak, D.L., Atmospheric dispersion models for dense gas releases, International System Safety Society (SSS), 10th conference, Dallas, TX, USA, 18–22 July (1991), Lawrence Livermore National Lab., CA; Rep. No. UCRLJC107536, CONF91071143.

    Google Scholar 

  87. Tourna, J.S.; Guinnup, D.; Spicer, T., Guidance on the Application of Refined Dispersion Models for Air Toxics Releases, Final report, Rep. No. EPA450491007, (1991).

    Google Scholar 

  88. Ermak, D.L., Concept for treating dense-gas dispersion under realistic conditions of terrain and variable winds, Lawrence Livermore National Lab., CA. Rep. No. UCRLJC104039, CONF90062101, (1990).

    Google Scholar 

  89. Ermak, D.L.; Lange-R., Treatment of denser-than-air releases in an advection-diffusion model: Thermodynamic effects, 84th Annual meeting and exhibition of the Air and Waste Management Association (AWMA), Vancouver, Canada, 16–21 June (1991), Lawrence Livermore National Lab., CA; Rep. No. UCRL-JC-106798, CONF-910659–12, (1991).

    Google Scholar 

  90. Matthias, C.S., Dispersion of dense cylindrical cloud in calm air, J. Hazard. Mater., 24 (1990) 39–65.

    Google Scholar 

  91. Bidokhti, A.A., A numerical model of heavy gas dispersion, Proceedings of the 8. Brazilian Meeting on Reactor Physics and Thermal Hydraulics, (1991), pp. 87–90. Rep. No. CONF-910983-, INIS-BR-2846.

    Google Scholar 

  92. Deaves, D.M.; Hall, R.C., The effects of sloping terrain on dense gas dispersion, J. Loss Prey. Process Ind. 3 (1990) 142–145.

    Google Scholar 

  93. Nikmo, J.; Kukkonen, J., Modelling of heavy gas cloud advection in complex terrain, Finnish Meteorological Institute, Helsinki, (preprint 1991 ).

    Google Scholar 

  94. Webber, D.M.; Jones, S.J.; Martin, D., A model of the motion of a heavy gas cloud released on a uniform slope, J. Hazard. Mater., 33 (1993) 101–122.

    CAS  Google Scholar 

  95. Pape, R.; Nussey, C., A basic approach for the analysis of risk for toxic risks, The Assessment and Control of Major Hazards, I. Chem. Eng. Symposium, 22–24 April 1985.

    Google Scholar 

  96. Webber, D.; Brighton, P., A mathematical model of a spreading vaporising liquid pool, 3rd Symposium on Heavy Gases and Risk Assessment, Bonn, November 1984.

    Google Scholar 

  97. Shaw, P.; Briscoe, F., Evaporation from spill of hazardous liquids on land and water, UKAEA Rep. No. SRD R100, (1978).

    Google Scholar 

  98. Chay, H.R.; Reid, R.C., Spreading boiling model for instantaneous spills of liquified petroleum gas (LPG) on water, J. of Haz. Materials, 7 (1982) 19–35.

    Google Scholar 

  99. Hall, S.F., A simple homogeneous equilibrium critical discharge model applied to multi-component, two- phase systems - The computer programs CRITS and CRITTER, UKAEA Rep. No. SRD R127, (1978).

    Google Scholar 

  100. Cox, R.A.; Roe, D.R., A model of the dispersion of dense vapour clouds. 2nd International Symposion on Loss Prevention and Safety Promotion in the Process Industries, Heidelberg, (1977), p. 359-.

    Google Scholar 

  101. Niggli, S., DispTool - Part I: User Manual and Part II: Theory Manual, (1992). Available from Swiss Reinsurance Company, Risk Management Service Center, Mythenquai 50/60, Zürich, P.O. Box, CH-8022, Switzerland.

    Google Scholar 

  102. Schiegl, W.E.; and Schorling, M., TA Luft, Vorschriften and Erläuterungen zum Immissionschutz (Ecomed Verlagsgesellschaft mbH, 8910 Landsberg/Lech, BRD, (1986).

    Google Scholar 

  103. Schnatz, G.; Rohbock, E., Dispersion of Heavy Gases–Experiments and Models, VDI-Bericht, 558 (1986) 143–66.

    CAS  Google Scholar 

  104. Fryer, L.S.; Kayser, G.D., DENZ A computer program for the calculation of the dispersion of dense toxic or explosive gases in the atmosphere, UKAEA Rep. No. SRD R 152, July 1979.

    Google Scholar 

  105. McQuaid, J., Objectives and Design of the Phase I Heavy Gas Dispersion trials, J. Hazard. Mater., 22 (1985) 13.

    Google Scholar 

  106. Brighton, P.W.M.; Prince, A.J.; Webber, D.M., Determination of cloud area and path from visual and concentration records, J. Hazard. Mater., 11 (1985) 155–178.

    CAS  Google Scholar 

  107. Fryer, L.S.; Kayser, G.D., DENZ A computer program for the calculation of the dispersion of dense toxic or explosive gases in the atmosphere, UKAEA Rep. No. SRD R 152, July 1979.

    Google Scholar 

  108. Jagger, S.F., The application of the computer code DENZ, U.K. Atomic Energy Authority, Safety Reliability Directorate, SRD, Report No. SRD R 277, (1985).

    Google Scholar 

  109. Crabol, B.; L’Homme-V.; Roux-A., Interpretation of the Thomey Island Phase 1 Trials with the Box Model Cigale2. Symposium on Analysis and Interpretation of Results of the Thomey Island Trials, Sheffield, UK, 23 Sept. 1986, CEA Centre d’Etudes Nucleaires de Fontenay-aux-Roses (France ), Dept. d’Analyse de Sûreté, (1986).

    Google Scholar 

  110. Alp, E., COBRA: An LNG (liquefied natural gas) model. Proceedings of the Heavy Gas (LNG/LPG) Workshop, (1985), pp. 76–92. Rep. No. CONF-8501127, CE-03673, CSC-CE303673.

    Google Scholar 

  111. Alp, E.; Matthias,-C.S., COBRA. A heavy gas/liquid spill and dispersion modelling system. Journal of Loss Prevention in the Process Industries, United Kingdom, 4 (3) (1991) 139–150.

    Google Scholar 

  112. Witlox, H.W.M.; Puttock, J.S.; Colenbrander, G.W., HEGADAS: Heavy Gas Dispersion Program, User’s Guide, Shell Research Ltd., Chester (England), (1988). Rep. No. EPASWDK89027A.

    Google Scholar 

  113. Marsden, A.; Guinnup, D., HEGADAS: Heavy Gas Dispersion Model (for Microcomputers), Model-Simulation. Rep. No. EPASWDK89027, (1989).

    Google Scholar 

  114. Singh, M.P.; Mohan, M.; Panwar, T.S.; Chopra, H.V., Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds, in Risk-Analysis, United-States, (1991).

    Google Scholar 

  115. Singh, M.P., Vulnerability analysis of airborne accidental release of toxic chemicals, in B.W. Gay, Jr. (ed.), EPA/AWMA International Symposium on Measurement of Toxic and Related Air Pollutants. Environmental Protection Agency, Washington, DC, USA, (1991); See also Rep. No. CONF-8907103-(1989), LA-I1728-C.

    Google Scholar 

  116. Havens, J.A., A Description and computational assessment of the “SIGMET LNG Vapor Dispersion Model”, J. of Haz. Materials, 6 (1982) 181–195.

    CAS  Google Scholar 

  117. Havens, J.A., A description and assessment of the SIGMET LNG vapor dispersion model, U.S. Coast Guard, Rep. No. CG-M-3–79, Feb. 1979.

    Google Scholar 

  118. Smith, T.B., Howard, S.M., Methodology for treating diffusivity, Final Report to Systems, Science and Software, LaJolla, CA, by Meteorology Research, Inc., Altadena, CA (MRI 72 FR-1030).

    Google Scholar 

  119. Havens, J., A dispersion model for elevated dense gas jet chemical releases, Volume II. User’s guide, U.S. Environ. Prot. Agency, Office Air Quality Planning Standards, Rep. No. EPA, EPA–450/4–88–006b, (1988). See also Volume 1, P888–202387.

    Google Scholar 

  120. Guinnup, D., Dispersion Model for Elevated Dense Gas Jet Chemical Releases (Ooms/DEGADIS) (for Microcomputers), Environmental Protection Agency, Research Triangle Park, NC. Office of Air Quality Planning and Standards, (1988). Rep. No. EPASWDK88048 (Software).

    Google Scholar 

  121. Havens, J.A.; Spicer-T.O., Development of an Atmospheric Dispersion Model for Heavier-Than-Air Gas Mixtures, Volume 1. Final rept. Sep 80-May 85 (AD-A171 522), Arkansas Univ., Fayetteville, Dept. of Chemical Engineering. Rep. No. USCGD2285.

    Google Scholar 

  122. Havens, J.A.; Spicer, T.O., Development of an Atmospheric Dispersion Model for Heavier-Than-Air Gas Mixtures, Volume 2 (AD-A171 523), Laboratory Calm Air Heavy Gas Dispersion Experiments, Dept. of Chemical. Engineering, Arkansas Univ., Fayetteville. Final report, Sept. 80-May 85.

    Google Scholar 

  123. Havens, J.A.; Spicer, T.O., Development of an Atmospheric Dispersion Model for Heavier-Than-Air Gas Mixtures, Volume 3, DEGADIS User’s Manual, Dept. of Chemical Engineering, Arkansas Univ., Fayetteville, Final report, Sept. 80-May 85 (AD-A171 524).

    Google Scholar 

  124. Spicer, T.; Havens, J. A., User’s guide for the DEGADIS 2.1 dense gas dispersion model, U.S. Environ. Prot. Agency, Off. Air Qual. Plann. Stand., EPA, Rep. No. EPA–450/4–89–019, (1989).

    Google Scholar 

  125. Hofmann, J.E., Dense gas dispersion modeling on the IBM-PC, in Proc. - APCA Annu. Meet., 81st(8), Paper 88/146. 7, (1988).

    Google Scholar 

  126. Wheatley, C.J.; A user’s guide to TRAUMA - A computer code for assessing the consequences of accidental two-phase releases of NH3 into moist air, UKAEA Rep. No. SRD/HSE R394, London, (1987).

    Google Scholar 

  127. LNG Vapor Dispersion Prediction with the DEGADIS Dense Gas Dispersion Model (for Microcomputers). Model-Simulation. Gas Research Inst., Chicago, IL. Rep. No. GRISWDK91002(1991).

    Google Scholar 

  128. Havens, J.A.; Spicer, T.O., LNG Vapor Dispersion Prediction with the DEGADIS Dense Gas Dispersion Model, Topical Report, April 1988 - July 1990, Dept. of Chemical Engineering, Arkansas Univ., Fayetteville. Rep. No. GRI890242, GRISWDK91002A.

    Google Scholar 

  129. Spicer, T.O.; Havens, J.A., Development of Vapor Dispersion Models for Nonneutrally Buoyant Gas Mixtures Analysis of USAF/N204 Test Data, Dept. of Chemical Engineering, Arkansas Univ., Fayetteville, Final report, 1 Feb. - 31 Jul. 85, (1986). Rep. No. AFESCESLTR8624.

    Google Scholar 

  130. Ermak, D.L., Denser-Than-Air Dispersion Modeling in the Atmosphere, JANNAF Safety and Environmental Protection Meeting, Livermore, CA, USA, 8th March 1983, Rep. No. UCRL88782, CONF8303213.

    Google Scholar 

  131. Morgan, D.L.; Morris-L.K.; Ermak-D.L., SLAB: A Time-Dependent Computer Model for the Dispersion of Heavy Gases Released in the Atmosphere. Lawrence Livermore National Lab., CA, (1983). Rep. No. UCRL53383.

    Google Scholar 

  132. Chan, S.T., FEM3: A Finite-Element Model for the Simulation of Heavy-Gas Dispersion and Incompressible Flow, User’s Manual. Lawrence Livermore National Lab., CA, (1983). Rep. No. UCRL53397.

    Google Scholar 

  133. Chan, S.T., FEM3; Heavy Gas Dispersion Incompressible Flow, Lawrence Livermore National Lab., CA. (1985). Rep. No: ESTSC-000198CY00100; NESC-9903, (Software).

    Google Scholar 

  134. Rodean, H.C.; Chan, S.T., Generalized phase-change submodels in the FEM3 model for gas dispersion, Rep. No. UCID-20817, Energy Res. Abstr. 11(18), Abstr. No. 41571, (1986).

    Google Scholar 

  135. Ermak, D.L.; Chan-S.T., FEM3 Dispersion Calculations: Evaluation of Turbulence Submodel. Lawrence Livermore National Lab., CA, (1986). Rep. No. UC1D20933.

    Google Scholar 

  136. Gresho P.M.; Chan, S.T.; Upson, C.D.; Lee R.L., A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations: Part 1, Theory; Part 2, Applications, (1984).

    Google Scholar 

  137. Chan, S.T., FEM3A: A Finite Element Model for the Simulation of Gas Transport and Dispersion: User’s Manual. Lawrence Livermore National Lab., CA, (1988). Rep. No. UCRL21043.

    Google Scholar 

  138. Chan, S.T.; Gresho-P.M., Ensuring mass conversion in a heavy-gas dispersion model using the generalized anelastic equations. Lawrence Livermore National Lab., CA, (1991). American Institute of Astronautics and Aeronautics/American Society of Mechanical Engineers (AIAA/ASME) National Fluid Dynamics Congress, Los Angeles, CA, 15–18 Jun 1992. Rep. No. UCRL-JC-107535; CONF-920605–3.

    Google Scholar 

  139. ARCHIE, Handbook of Chemical Hazard Analysis Procedures, Federal Emergency Management Agency (FEMA), U.S. Department of Transportation, U.S. Environmental Protection Agency, (1987).

    Google Scholar 

  140. Raj, P.K.; Morris, J.A., Source Characterization and Heavy Gas Dispersion Models for Reactive Chemicals, Vol. I, (1987). Rep. AD-A200121, AFGL-TR-88–0003 (I) From: Gov. Rep. Announce. Index (U.S.) (1989), 89(5), Abstr. No. 911,263 (1987). See also volume 2, AD-A192 209.

    Google Scholar 

  141. Me, G.; Springer, C., The Evaporation and Dispersion of Hydrazine Propellant From Ground Spills, CEEDO-TR-78–30, AD A059407, (1978).

    Google Scholar 

  142. Meroney, R.N., Transient characteristics of dense gas dispersion. Part I: a depth-averaged numerical model, J. Hazard. Mater., 9 (2), (1984) 139–57.

    CAS  Google Scholar 

  143. Meroney, R.N., Transient characteristics of dense gas dispersion. Part II: numerical experiments on dense cloud physics, J. Hazard. Mater., 9 (2), (1984) 159–70.

    CAS  Google Scholar 

  144. Wheatley, C.J.; Webber, D.M., Aspects of the dispersion of denser-than-air vapours relevant to gas cloud explosions, C.mmission of the European Communities, Brussels. Rep. No. EUR 9592, (1984).

    Google Scholar 

  145. Davies, D.M., Development and application of heavy gas dispersion models of varying complexity, J. Hazard. Mater., 16 (1987) 427–438.

    Google Scholar 

  146. Schatzmann, M., Experimental determination of the effect of building construction on the spread of heavy gases. Final report. Rep.No. BMFT 13RG8603, (1990).

    Google Scholar 

  147. Schatzmann, M.; Marotzke, K., Dispersion modeling within risk assessment studies, NATO Challenges Mod. Soc., 15 (Air Pollut. Model. Its Appl. 8), (1991), pp. 639–42.

    CAS  Google Scholar 

  148. Ermak, D.L., Dense-gas dispersion advection-diffusion model. JANNAF Safety and Environmental Subcommittee meeting, Monterey, CA (United States), 10–14 Aug. 1992, Lawrence Livermore National Lab., CA. Rep. No. UCRLJC109697, CONF92081122.

    Google Scholar 

  149. Gudiksen, P.H.; Edwards, L.L.; Ermak, D.L.; Leone, J.M., LLNL atmospheric dispersion model developments in support of emergency response, Topical Meeting on Emergency Preparedness and Response (3rd), Chicago, IL (USA), 16–19 Apr. (1991). Lawrence Livermore National Lab., CA. Rep. No. UCRLJC106282, CONF9104342.

    Google Scholar 

  150. Ermak, D.L., User’s manuai for SLAB: An atmospheric dispersion model for denser-than-air-releases. Lawrence Livermore National Lab, CA, (1990). Rep. No. UCRL-MA-105607.

    Google Scholar 

  151. Puttock, J.S., Comparison of Thomey Island data with predictions of HEGABOX/HEGADAS, J. Hazard. Mater., 16 (1987) 439–455.

    CAS  Google Scholar 

  152. Rion, Y., Comparison between MERCURE-GL code calculations, wind tunnel measurements and Thomey Island field trials, J. Hazard. Mater., 16 (1987) 247–265.

    Google Scholar 

  153. Nikmo, J.; Kukkonen, J., Modelling heavy gas cloud advection in complex terrain, in M. Kulmala, and J. Kukkonen (eds.), Workshop on the Atmospheric Chemistry and Physics, (1990), pp. 36–41. Rep. No. CONF-9008169-, LTKK-EN-D19.

    Google Scholar 

  154. Kukkonen, J.; Nikmo, J., Modeling heavy gas cloud transport in sloping terrain, J. Hazard. Mater., 31 (2), (1992) 155–76.

    CAS  Google Scholar 

  155. Webber, D.M.; Kukkonen, J.S., Modelling two-phase jets for hazard analysis, J. Hazard. Mater., 23 (1990) 167–182.

    Google Scholar 

  156. Kukkonen, J., Modelling source terms for the atmospheric dispersion of hazardous substances, in Commentationes Physico Mathematicae Societas Scientiarum Fennica, Finland, 115 (1990)1–111.

    Google Scholar 

  157. Grand, D.; Villand, M.; Silveira, A., Numerical simulation of the dispersion of pollutants with the three-dimensional code Trio, in Advanced Modelling and Computer Codes for Calculating local-Scale and Meso-Scale Atmospheric Dispersion of Radionuclides and their Applications, Organisation for Economic Co-Operation and Development. Paris (France), (1991).

    Google Scholar 

  158. Sedefian, L.; Benett, E., A comparison of turbulence classification schemes, Atmos. Environ., 14 (1980) 741–750.

    Google Scholar 

  159. Chandhry, F.H.; Meroney, R.N., A laboratory study of diffusion in a stably stratified flow, Atm. Env., 74 (1973) 443.

    Google Scholar 

  160. Martin, J.E., The correlation of wind tunnel and field measurements of gas diffusion using Kr-85 as tracer, Ph.D. Thesis, MMPP 272, University of Michigan, (1965).

    Google Scholar 

  161. Ysiumov, N.; Jondali, T.; Davenport, A.G., Model studies and the prediction of full-scale levels of stack gas concentration, J. of APCA, 26 (10), (1976) 956.

    Google Scholar 

  162. Kothari, K.M.; Meroney, R.N.; Bouwmeester, R.J., An algorithm to estimate field concentrations in the wake of power plant complexes under nonsteady meteorological conditions from wind-tunnel experiments, J. Applied Meteorology, 20 (8), (1981) 934–943.

    Google Scholar 

  163. Yingst, J.C.; Swanson, R.N.; Mooney, M.L., et al., Review of five wind-tunnel modeling results in complex terrain, 5th Symp. on Turbulence, Diffusion, and Air Pollution, Atlanta, Georgia, (1981), pp. 148.

    Google Scholar 

  164. Weil, J.C.; Cermak, J.E.; Petersen, R.L., Plume dispersion about the windward side of a hill at short range: Wind tunnel versus measurement, 5th Symp. on Turbulence, Diffusion, and Air Pollution, Atlanta, Georgia, (1981), pp. 159.

    Google Scholar 

  165. Andreiev, G.; Neff, D.E.; Meroney, R.N., Heat Transfer Effects during Cold Dense Gas Dispersion. Final report, Aug. 82 - Sept. 1983, Colorado State University, Fort Collins, Dept. of Civil Engineering; Rep. No. CER8384GADENRNM3, GRI830022.

    Google Scholar 

  166. Hall, D.J.; Hollis, E.J.; Ishag, H., Wind Tunnel Model of the Portion Dense Gas Spill Field Trials, Warren Spring Lab., Stevenage, England, (1982). Rep. No. LR394AP, ISBN0856242764.

    Google Scholar 

  167. Hall, D.J.; Waters, R.A., Wind tunnel model comparisons with the Thorney Island dense gas release fiels trials, J. Hazard. Mater., 11 (1985) 209–235.

    CAS  Google Scholar 

  168. Van Heugten, W.H.H.; Duijm, N.J., Some findings based on wind tunnel simulation and model calculations of Thorney Island trials No. 008, J. Hazard. Mater., 11 (1985) 409–416.

    Google Scholar 

  169. Baynes, C.J., Calculation of near-field concentrations of hydrogen sulphide, (1985). Rep. No. INFO-0163.

    Google Scholar 

  170. Krogstad, P.A.; Pettersen, R.M., Windtunnel modelling of a release of a heavy gas near a building, Atmos. Environ., 20 (5), (1986) 867–78.

    CAS  Google Scholar 

  171. Britter, R.E., Fluid modeling of dense gas dispersion over a ramp, J. Hazard. Mater., 18 (1988) 37–67.

    CAS  Google Scholar 

  172. Hall, D.J.; Waters, R.A., Investigation of Two Features of Continuously Released Heavy Gas Plumes. Warren Spring Lab., Stevenage, England, (1989). Rep. No. LR707PAM, ISBN0856245658.

    Google Scholar 

  173. Neff, D.E., Physical modeling of heavy plume dispersion. Ph.D. Thesis (1989). Colorado State Univ., Fort Collins, CO (USA). Availability: University Microfilms, PO Box 1764, Ann Arbor, MI 48106, Order No. 90–00, 477.

    Google Scholar 

  174. Murphy, M.C.; Heidom, K.C.; Irwin, P.A., Scale model studies and development of prediction procedures for heavy gas dispersion in complex terrain, in Proceedings of the Technology Transfer Conference, Toronto, ON. Session A: Air quality research, (1988), pp. 109–147. Rep. No. CONF-88 1 1 29 1-, MICROLOG-89–02641.

    Google Scholar 

  175. Murphy, M.C.; Heidom, K.C.; Irwin, P.A.; Davies, A.E., Scale model studies of heavy gas dispersion, in Proceedings of the Air and Waste Management Assoc., 82nd Annual Meeting and Exhibition (Abstracts), Technical Rep. No. 89–55.1., (1989), pp. 57. Rep. No. CONF-890692-.

    Google Scholar 

  176. Murphy, M.C.; Heidorn, K.C.; Irwin, P.A.; Davies, A.E., Heavy gas dispersion in terrain with obstacles. Proceedings of the sixth technical seminar on chemical spills, (1989), pp. 19–43. Rep. No. CONF8906284-, MICROLOG-89–04698, CONF-8906284-.

    Google Scholar 

  177. Krogstad, P.A.; Jacobsen, 0., Dispersion of heavy gases, in D.N. Cheremisinoff, Encyclopedia of Environmental Control Technology, New Jersey Inst. of Tech., Newark, NJ, USA, Gulf Publishing Company, (1989), pp. 631–678.

    Google Scholar 

  178. Gudivaka, V.; Kumar, A., An evaluation of four box models for instantaneous dense-gas releases, J. Hazard. Mater., 25 (1990) 237–255.

    Google Scholar 

  179. Shin, S.H.; Meroney, R.N.; Neff, D.E., LNG Vapor Barrier and Obstacle Evaluation: Wind-Tunnel Simulation of 1987 Falcon Spill Series, Final Report, July 1987 - February 1991, Dept. of Civil Engineering, Colorado State Univ., Fort Collins.

    Google Scholar 

  180. Heidom, K.C.; Murphy, M.C.; Irwin, P.A., Effects of obstacles on the spread of a heavy gas–Wind tunnel simulations, J. Hazard. Mater., 30 (1992) 151–194.

    Google Scholar 

  181. Riethmuller-M.L., Critical Confrontation of Standard and More Sophisticated Methods for Modelling the Dispersion in Air of Heavy Gas Clouds: Evaluation and Illustration of the Intrinsic Limitations of both Categories, Commission of the European Communities, Luxembourg, Final report, (1983). Rep. No. EUR8423.

    Google Scholar 

  182. Fox, D.G., Uncertainty in air quality modelling, Bull Am. Meteorol. Soc., 65 (1984) 27–36.

    Google Scholar 

  183. Ermak, D.L., Field validation of dispersion models for dense-gas releases, NATO Challenges Mod. Soc., 13 (Air Pollut. Model. Its Appl. 7), (1989), pp. 383–92.

    CAS  Google Scholar 

  184. Hanna, R.S.; Chang, J.C., Uncertainties in Hazardous Gas Model Predictions, Int. Conf. and Workshop on Modelling and Mitigating the Consequences of Accidental Releases of Hazardous Materials, New-Orleans, Louisiana, May 20–24, (1991).

    Google Scholar 

  185. Hanna, S.R.; Strimaitis, D.G.; Chang, J.C., Evaluation of 14 hazardous gas models with ammonia and hydrogen fluoride field data. To appear in J. Hazard. Mat. (1992-…)

    Google Scholar 

  186. Koopman, R.P.; Ermak-D.L.; Chan-S.T., Review of Recent Work in Atmospheric Dispersion of Large Spills, Lawrence Livermore National Lab., CA, (1988). Rep. No. UCRL97377, CONF88051035.

    Google Scholar 

  187. Ermak, D.L.; Merry-M., Methodology for Evaluating Heavy Gas Dispersion Models. Lawrence Livermore National Lab., CA, Final report Nov 85-Feb 1988. Rep. No. AFESCESLTR8837 (1989).

    Google Scholar 

  188. Smith, D.G., Emergency response/contingency planning considerations, in R.V. Portelli (ed.), Proceedings of the Heavy Gas (LNG/LPG) Workshop, (1985), pp. 216–223. Rep.No. CONF-8501127-, CE-03673, CSC-CE03673.

    Google Scholar 

  189. Davies, M.E.; Inman, P.N., A statistical examination of wind tunnel modelling of the Thorney Island trials, J. Hazard. Mater., 16 (1987) 149–172.

    CAS  Google Scholar 

  190. Hall, D.J., Further experiments on a model of an escape of heavy gas, Warren Spring Laboratory, Stevenage, Herts, (1979). Rep. No. LR 312 (AP).

    Google Scholar 

  191. Puttock, J.S.; Blackmore, D.R.; Coelnbrander, G.W., Field Experiments on Dense Gas Dispersion, in R.E. Britter and R.F. Griffifths (eds.), Dense Gas Dispersion, Chemical Engineering Monographs 16, Elsevier, (1982).

    Google Scholar 

  192. Experiments with Chlorine“: Report published by the Directorate General of Labour of the Ministery of Social Affairs, Voorburg, The Netherlands, (1975).

    Google Scholar 

  193. Picknett, R.G., Dispersion of dense gas puffs released in the atmosphere at ground level, Atm. Env., 15 (1981) 509–525.

    Google Scholar 

  194. Koopman, R.P.; Cederwall, R.T.; Ermak, D.L., et al., Analysis of Burro series 40-m3 LNG spill experiments, J. Hazard. Mater., 6 (1982) 43–83.

    CAS  Google Scholar 

  195. Ermak, D.L.; Chan, S.T.; Morgan, D.L.; Morris, L.K., A comparison of dense gas dispersion model simulations with Burro series LNG spill test results, J. Hazard. Mater., 6 (1–2), 129–60 (1982).

    CAS  Google Scholar 

  196. McQuaid, J., Observation on the current status of field experimentation on heavy gas dispersion, in Ooms and Tennekes (eds.), Atmospheric Dispersion of Heavy Gases and Small Particles, Springer Verlag, (1984), pp. 241–267.

    Google Scholar 

  197. Havens, J.A.; Spicer, T.O., Development of an atmospheric gas model for heavier-than-air gas mixtures. U.S. Dept. of Transport, U.S. Coast Guard, (1985). Rep. No.CG-D-23–85.

    Google Scholar 

  198. Colenbrander, G.W.; Puttock, J.S., Maplin Sands experiments 1980: Interpretation and modelling of liquified gas spills into the sea, in Ooms and Tennekes (eds.), Atmospheric Dispersion of Heavy Gases and Small Particles, Springer Verlag, (1984), pp. 277–295.

    Google Scholar 

  199. Hall, D.J., Further experiments on a model of an escape of heavy gas, Warren Spring Laboratory, (1977). Rep. CR 1314 (AP).

    Google Scholar 

  200. Colenbrander, G.W., A mathematical model for the transition behavior of dense vapor clouds, in 3rd Proc. Int. Symp. Loss Prevention and Safety pronmotion in the Process Industries, Basel, (1980).

    Google Scholar 

  201. Ermak, D.L; Nyholm, R.A.; Lange, R., ATMAS: A three-dimensional atmospheric transport model to treat multiple area sources, Lawrence Livermore Nat. Lab., Livermore, CA, (1978). Rep. No. UCRL-52603.

    Google Scholar 

  202. Morgan, D.L.; Kansa, E.J.; Morris, L.K., Simulations and Studies of Heavy-Gas Dispersion Using the SLAB Model. American Meteorological Society symposium on turbulence and diffusion, Boston, MA, USA, 22 March 1983. Rep. No. UCRL88009, CONF83030711, (1983).

    Google Scholar 

  203. Ermak, D.L., LNG Vapor-Dispersion Research at LLNL: Remaining Questions. Gas Research Institute workshop on vapor dispersion, Cambridge, MA, USA, 23 Mar 1982. Rep. No. UCRL87668, CONF8203781.

    Google Scholar 

  204. Havens, J.A.; Spicer, T.O., Further analysis of catastrophic LNG spill vapor dispersion, in S. Hartwig (ed.), Heavy Gas Risk Assessessment, II., Proc. Symp., 2nd, Meeting ( 1982 ), Reidel, Dordrecht, Netherlands, (1983), pp. 181–210.

    Google Scholar 

  205. Chan, S.T.; Rodean, H.C.; Ermak, D.L., Numerical simulations of atmospheric releases of heavy gases over variable terrain. 13th International Technical Meeting on Air Pollution Modeling and its Application, Toulon, France, 14 Sept. (1982). Rep. No. UCRL87256, CONF8209362.

    Google Scholar 

  206. Chan, S.T.; Ermak, D.L., Recent results in simulating LNG (Liquefied Natural Gas) vapor dispersion over variable terrain, Revision 1, International Union of Theoritical and Applied Mechanics, Symposium on Atmospheric Dispertion of Heavy Gases and Small Particles, Delft, Netherlands, 28 Aug. (1983). Rep. No. UCRL88495REV1, CONF8308024-Revl.

    Google Scholar 

  207. Koopman, R.P.; McRae, T.G.; Goldwire, H.C.; Ermak, D.L.; Kansa, E.J., Results of recent large-scale NH3 and N2O4 dispersion experiments. Symposium on Heavy Gases and Risk Assessment, Bonn, F.R. Germany, 12 Nov. (1984).

    Google Scholar 

  208. McRae, T.G., Analysis and Model/Data Comparisons of Large-Scale Releases of Nitrogen Tetroxide. (1985). Lawrence Livermore National Lab., CA. Rep. No. UCID20388.

    Google Scholar 

  209. Hartwig, S.; Schnatz, G.; Heudorfer, W., Improved understanding of heavy gas dispersion and its modeling, Atmos. Dispersion Heavy Gases Small Particles, Symp., Meeting Date 1983, 139–55. Edited by: Ooms, Gijsbert; Tennekes, Hendrik. Springer: Berlin, Fed. Rep. Ger., (1984).

    Google Scholar 

  210. Hall, D.J.; Waters, R.A., Wind Tunnel Model Comparisons with the Thomey Island Dense Gas Release Field Trials, Air Pollution Abstracts, Warren Spring Lab., Stevenage, England, (1984). Rep. No. LR489APM, ISBN0856243434.

    Google Scholar 

  211. Morgan, D.L.; Kansa, E.J.; Morris, L.K., Simulations and parameter-variation studies of heavy-gas dispersion using the SLAB Model, International Union of Theoritical and Applied Mechanics Symposium on Atmospheric Disperation of Heavy Gases and Small Particles, Delft, Netherlands, 28 August, (1983). Lawrence Livermore National Lab., CA; Rep. No. UCRL90150, CONF8308021Sum.

    Google Scholar 

  212. Morgan, D.L.; Kansa, E.J.; Mor is, L.K., Simulations and parameter variation studies of heavy-gas dispersion using the SLAB model. International Union of Theoritical and Applied Mechanics Symposium on Atmospheric Disperation of Heavy Gases and Small Particles, Delft, Netherlands, 28 August, (1983). Rep. No. UCRL88516Rev1, CONF8308021Rev1.

    Google Scholar 

  213. Morgan, D.L.; Kansa, E.J.; Morris, L.K., Simulations and parameter variation studies of heavy gas dispersion using the SLAB model, Condensed. International Union of Theoritical and Applied Mechanics Symposium on Atmospheric Disperation of Heavy Gases and Small Particles, Delft, Netherlands, 28 August (1983), Lawrence Livermore National Lab., CA. Rep. No. UCRL90150, CONF8308021 Sum.

    Google Scholar 

  214. Morgan, D.L., Dispersion Phenomenology of LNG Vapor in the Burro and Coyote LNG Spill Experiments, Lawrence Livermore National Lab., CA, (1984). Rep. No. UCRL91741, CONF84120119.

    Google Scholar 

  215. Morgan, D.L.; Moms, L.K.; Chan, S.T.; Ennak, D.L.; McRae, T.G., Phenomenology and Modeling of Liquefied Natural Gas Vapor Dispersion, Lawrence Livermore National Lab., CA, (1984). Rep. No. UCRL53581.

    Google Scholar 

  216. Havens, J.A.; Schreurs-P.J., Evaluation of 3-D Hydrodynamic Computer Models for Prediction of LNG Vapor Dispersion in the Atmosphere, Annual Report PB85–1 1 8503, Mar 83 - Feb 84, Dept. of Chemical Engineering Arkansas Univ., Fayetteville, (1984).

    Google Scholar 

  217. Havens, J.A.; Spicer, T.O.; Schreurs-P.J., Evaluation of 3-D Hydrodynamic Computer Models for Prediction of LNG (Liquefied Natural Gas) Vapor Dispersion in the Atmosphere, Dept. of Chemical Engineering, Arkansas Univ., Fayetteville, Final Report March 1983 - April (1987).

    Google Scholar 

  218. Jensen, N.O.; Mikkelsen, T., Entrainment through the top of a heavy gas cloud, numerical treatment, NATO Challenges Mod. Soc., 5 (Air Pollut. Model. Its Appl. ), (1984), pp. 343–51.

    Google Scholar 

  219. Gotaas, Y., Heavy gas dispersion and environmental conditions as revealed by the Thomey Island experiments, J. Hazard. Mater., 11 (1985) 399–408.

    Google Scholar 

  220. Puttock, J.S.; Colenbrander, G.W., Dense gas dispersion: Experimental research, in R.V. Portelli (ed.), Proceedings of the heavy gas (LNG/LPG) workshop, (1985), pp. 32–50. Rep. No. CONF-8501127-, CE-03673, CSC-CE303673.

    Google Scholar 

  221. Spicer, T.O.; Havens, J.A., Modeling the phase I Thomey Island experiments, J. Hazard. Mater., 11 (1985) 237–260.

    CAS  Google Scholar 

  222. Chan, S. T.; Ermak, D.L., Further Assessment of FEM3: A Numerical Model for the Dispersion of Heavy Gases over Complex Terrain, JANNAF Safety and Environmental Protection Subcommittee meeting, Monterey, CA, USA, 4 Nov. (1985). Rep. No. UCRL92497, CONF85111103.

    Google Scholar 

  223. Havens, J.A.; Schreurs-P.J., Evaluation of 3-D Hydrodynamic Computer Models for Prediction of LNG Vapor Dispersion in the Atmosphere, Annual Rep. March 1984 - February 1985, Arkansas University, Fayetteville.

    Google Scholar 

  224. Koopman, R.P., Atmospheric Dispersion of Large Scale Spills, AIChE Winter Annual Meeting, Miami, FL, USA, 2 Nov. (1986). Lawrence Livermore National Lab., CA. Rep. No. UCRL95091, CONF8611463.

    Google Scholar 

  225. Chan, S.T.; Ermak, D.L., Further Assessment of FEM3: A Numerical Model for the Dispersion of Heavy Gases over Complex Terrain, Lawrence Livermore National Lab., CA, (1985).

    Google Scholar 

  226. Ermak, D.L.; Chan, S.T., Institute of Mathematics and its Applications, Conference on stably stratified flows and dense gas dispersion, Chester, UK, April 9, (1986).

    Google Scholar 

  227. Davies, M.E.; Inman-P.N., Wind Tunnel Modelling of the Thomey Island Heavy Gas Dispersion Trials, British Maritime Technology Ltd., Teddington, England, Applied Fluid Mechanics Div., Final Rep. January 1985 - July 1986. Rep. No. BMT25003, GRI860264.

    Google Scholar 

  228. Meroney, R.N., Guideline for Fluid Modeling of Liquefied Natural Gas Cloud Dispersion, Volume 2, Technical Support Document, Final report (July 1985). See also Volume I: Instruction Guide for the fluid model prediction of liquefied natural gas (LNG) storage and transportation hazards, (1986). Rep. No. CER8485RNM50B, GRI8501022.

    Google Scholar 

  229. Van Ulden, A.P., The heavy gas mixing process in still air at Thomey Island and in the laboratory, J. Hazard. Mater., 16 (1987) 411–425.

    Google Scholar 

  230. Comwell, J.B.; Pfenning, D.B., Comparison of Thorney Island data with heavy gas dispersion models, J. Hazard. Mater., 16 (1987) 315–37.

    Google Scholar 

  231. Eidsvik, K.J., Dispersion of Heavy gas Cloud in the Atmosphere, Rep. NILU OR 32/78, Norvegian Institute of Air Research, 1978. (see also Eidsvik, K.J., A model for heavy gas dispersion in the atmosphere, Atmos. Environ., 14 (1978) 769–777 ).

    Google Scholar 

  232. Brighton, P.W.M., A user’s critique of the Thorney Island dataset, J. Hazard. Mater., 16 (1987) 457–500.

    CAS  Google Scholar 

  233. Crabol, B.; Roux, A., Interpretation of the Thomey Island Phase 1 Trials with the Box Model Cigale2, J. Hazard. Mater., 16 (1987).

    Google Scholar 

  234. Spicer, T.O.; Havens, J.A., Field test validation of the DEGADIS model, J. Hazard. Mater., 16 (1987) 231245.

    Google Scholar 

  235. Chan, S.T.; Ermak, D.L.; Morris, L.K., FEM3 model simulations of selected Thomey Island phase I trials, J. Hazard. Mater., 16 (1987) 267–292.

    CAS  Google Scholar 

  236. Carpenter, R.J.; Cleaver, R.P.; Waite, P.J.; English, M.A., The calibration of a simple model for dense gas dispersion using the Thomey Island Phase I trials data, J. Hazard. Mater., 16, 293–313 (1987).

    CAS  Google Scholar 

  237. Bradley, C.I.; Carpenter, R.J.; Waite, P.J.; Ramsey, C.G.; English, M.A., Recent development of a simple box-type model for dens vapour cloud dispersion, in D. Reidel (ed.), Proc. Symposium on Heavy Gases and Risk Analysis, May 25–26, 1982, Battelle Institute, Frankfurt, (1983).

    Google Scholar 

  238. Deaver, D.M., Development and application of heavy gas dispersion models of varying complexity, J. Hazard. Mater., 16 (1987) 427–38.

    Google Scholar 

  239. Britter, R.E., Assessment of the Use of Cold Gas in a Windtunnel to Investigate the Influence of Thermal Effects on the Dispersion of LNG Vapour Clouds, Cambridge Univ., England, (1987). Rep. No. CUEDAAEROTR14.

    Google Scholar 

  240. Chikhliwala, E.D.; Oliver,-M.; Shinde, A.N., Proceedings Annual Meeting, Air Pollution Control Association, USA, (1987), pp. 1–26. Rep. No. CONF-870695-.

    Google Scholar 

  241. Chan, S.T., Numerical simulation of the mitigating effects of an LNG vapor fence, Joint Army Navy NASA Air Force Safety and Environmental Protection Conference, 18–22 June 1990, Livermore, CA (USA ), (1990).

    Google Scholar 

  242. Chan, S.T., Numerical simulations of LNG vapor dispersion from a fenced storage area, J. Hazard. Mater., 30 (1992) 195–224.

    CAS  Google Scholar 

  243. Britter, R.E., The ground level extent of a negatively buoyant plume in a turbulent bondary layer, Atm. Env. 14 (1980) 779.

    Google Scholar 

  244. Hanna, S.R.; Strimaitis, D.G.; Chang, J.C., Evaluation of fourteen hazardous gas models with ammonia and hydrogen field data, J. Hazard. Mater., 26 (1991) 127–158.

    CAS  Google Scholar 

  245. Influence of Short-Term Concentration Peaks on Exposure Risks in the Vicinity of an Episodic Release of Hydrogen Sulphide, Monserco Ltd., Montreal, Quebec, (1981).

    Google Scholar 

  246. Probabilistic Consequence Assessment of Hydrogen Sulphide Releases from a Heavy Water Plant, Scope Determination, Atomic Energy Control Board, Ottawa, Ontario, (1983). Rep. No. INFO01021.

    Google Scholar 

  247. Abbott, M.L., Toxic vapor cloud impacts from accidental releases of anhydrous ammonia and nitrogen dioxide at the ICPP NO Abatement Facility, EG and G Idaho, Inc., Idaho Falls, (1992).

    Google Scholar 

  248. Raj, P.K., Hydrogen Fluoride and Fluorine Dispersion Models Integration Into the Air Force Dispersion Assessment Model, Technology and Management Systems, Inc., Burlington, MA; Volume 1, Final report, 1 March 89–30 Nov. (1990). Rep. No. GLTR900321VOL1.

    Google Scholar 

  249. Rasmussen, K., European Community Documentation Centre on Industrial Risk, Toxicol. Environ. Chem., 25 (1990) 213–219.

    CAS  Google Scholar 

  250. Rasmussen, K.; Gow, H.B.F., The importance of information on industrial risk: A new documentation center, J. Hazardous Materials 30 (1992) 355–359.

    Google Scholar 

  251. Drogaris, G., Major Accident Reporting System: Lessons learned from Accidents, Notified EUR 13385 EN, Commission of the European Communities, Luxembourg, (1991).

    Google Scholar 

  252. Flyvholm, M.-A.; Andersen, P.; Beck, I.D.; Brandorff, N.P., PROBAS: The Danish Product Register Data Base - A national register of chemical substances and products.

    Google Scholar 

  253. Papazoglou, I.A.; Christou, M.; Nivolianitou, Z.; Aneziris, O., On the Management of Severe Chemical Accidents, DECARA: A computer code for consequences analysis in chemical installations, Case study: Ammonia plant, J. Hazard. Mater., 31 (1992) 135–153.

    CAS  Google Scholar 

  254. TNO 1980, 1992. Methods for the calculation of physical effects resulting from releases of hazardous materials (liquids and Gases), TNO - The Netherlands Organization of Applied Scientific Research, Directorate-General of Labour of the Ministry of Social Affairs and Employment, Postbox 90804, 2509 LV, The Hague, Rep. No. CPR I4E (1992), Second Edition, (ISSN 0921–9633/2.10.014/9203).

    Google Scholar 

  255. Stewart, A.M.; Van Aerde, M.; Shortreed, J.H., Enhancements and updates to the RISKMOD risk analysis model, J. Hazard. Mater., 25 (1990) 107–119.

    Google Scholar 

  256. Raj, P.K.; Kalelkar, A.S., Assessment Models in Support of the Hazard Assessment Handbook (CG-446–3, Technical support to the U.S. Coast Guard, Washington DC, 20590, (Jan. 1974).

    Google Scholar 

  257. ALPE, Environmental Software Product Review, J. of Am. Institute of Plant Managers–Facility Management, Operations Engineering, 16 (4), (1989), pp. 20–23.

    Google Scholar 

  258. Hanna, S.; Drivas, P., Guidelines for Use of Vapor Cloud Dispersion Models, Report to the center for Chemical Process Safety (CCPS), (1987). AIChE, 345 E, 47th Street, New York 100017.

    Google Scholar 

  259. Raj, K.; Morris, J.A., Computerized Spill Hazard Evaluation Models, J. Hazard. Mater., 25 (1990) 77–92.

    Google Scholar 

  260. Potts, R., Hazard Assessment Computer System - HACS, User Operation Manual, Vol. 2, Report to the U.S. Coast Guard, Washington DC, 20590, (Sept. 1981).

    Google Scholar 

  261. Raj, P.K.; Morris, J.A., Source Characterization and Heavy Gas Dispersion Models for Reactive Chemicals, Vol. 1, Rep. to the U.S. Air Force, Air Force System Command, Hanscom AFB, MA 01731, (Dec. 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gheorghe, A.V., Nicolet-Monnier, M. (1995). Modeling of Dense Gas Dispersion. In: Integrated Regional Risk Assessment, Vol. II. Environmental Science and Technology Library, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0481-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0481-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4614-7

  • Online ISBN: 978-94-017-0481-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics